login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies Sum_{n>=1} A(x^n - 3*x^(n+1)) = x.
3

%I #14 Oct 26 2024 06:51:58

%S 1,2,14,108,932,8494,80816,792834,7964766,81525244,847234316,

%T 8915840154,94819534880,1017494297362,11003391627478,119797392972660,

%U 1312015757405828,14444656015113630,159773654937327260,1774697222194801818,19787293416104986024,221379967241156347006,2484547366889151931430

%N G.f. A(x) satisfies Sum_{n>=1} A(x^n - 3*x^(n+1)) = x.

%H Paul D. Hanna, <a href="/A377103/b377103.txt">Table of n, a(n) for n = 1..600</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.

%F (1) x = Sum_{n>=1} A(x^n - 3*x^(n+1)).

%F (2) x = Sum_{n>=1} a(n) * x^n * (1-3*x)^n/(1-x^n).

%F (3) F(x) = Sum_{n>=1} a(n) * x^n / (1 - F(x)^n), where F(x) = (1 - sqrt(1 - 12*x))/6 = C(3*x)/3 and C(x) is the g.f. of the Catalan numbers (A000108).

%F a(n) ~ c * 12^n / n^(3/2), where c = 0.041106239119057419763719574770353578634816297455230079187498... - _Vaclav Kotesovec_, Oct 26 2024

%e G.f.: A(x) = x + 2*x^2 + 14*x^3 + 108*x^4 + 932*x^5 + 8494*x^6 + 80816*x^7 + 792834*x^8 + 7964766*x^9 + 81525244*x^10 + 847234316*x^11 + 8915840154*x^12 + ...

%e where

%e x = A(x - 3*x^2) + A(x^2 - 3*x^3) + A(x^3 - 3*x^4) + A(x^4 - 3*x^5) + A(x^5 - 3*x^6) + A(x^6 - 3*x^7) + ...

%e Also,

%e x = a(1)*x*(1-3*x)/(1-x) + a(2)*x^2*(1-3*x)^2/(1-x^2) + a(3)*x^3*(1-3*x)^3/(1-x^3) + a(4)*x^4*(1-3*x)^4/(1-x^4) + ...

%e SPECIFIC VALUES.

%e Note that x = Sum_{n>=1} A(x^n - 2*x^(n+1)) holds for -1/15 <= x <= 1/6.

%e 1/6 = A(3/6^2) + A(3/6^3) + A(3/6^4) + A(3/6^5) + A(3/6^6) + ...

%e 1/7 = A(4/7^2) + A(4/7^3) + A(4/7^4) + A(4/7^5) + A(4/7^6) + ...

%e 1/8 = A(5/8^2) + A(5/8^3) + A(5/8^4) + A(5/8^5) + A(5/8^6) + ...

%e -1/15 = A(-2/25) + A(18/15^3) + A(-18/15^4) + A(18/15^5) + ...

%e A(1/12) = 0.14956091765123027740377899281470645932919267413067...

%e A(4/49) = 0.12894954654418769297020015649231204633105229586338...

%e A(5/64) = 0.11363138588219220039269772014857100093492862921410...

%e A(2/27) = 0.10170632771991407843228415767466801054005630940554...

%e A(-2/25) = -0.071726024357260297922935430546055655984452853890...

%o (PARI) \\ using formula (1)

%o {a(n) = my(V=[0,1]); for(i=1,n, V=concat(V,0); A=Ser(V);

%o V[#V] = polcoef(x - sum(m=1,#V, subst(A,x, x^m*(1 - 3*x) +x*O(x^#V))),#V-1) ); polcoef(A,n)}

%o for(n=1,30,print1(a(n),", "))

%o (PARI) \\ using formula (2)

%o {a(n) = my(V=[0,1]); for(i=1,n, V=concat(V,0); A=Ser(V);

%o V[#V] = polcoef(x - sum(m=1,#V-1, V[m+1]*x^m*(1-3*x)^m/(1-x^m +O(x^#V))),#V-1) ); polcoef(A,n)}

%o for(n=1,30,print1(a(n),", "))

%Y Cf. A377101, A377102, A000108.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Oct 18 2024