Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Nov 05 2024 00:27:19
%S 1,1,0,-6,28,-49,-209,1945,-6300,-4446,151432,-743536,988060,10249455,
%T -81504471,258880346,300869650,-8167615575,44558308870,-71525786057,
%U -732809984342,6381652419043,-18603393452659,-53763812221286,725973111298364,-2669418073839071,398471644489074
%N G.f. A(x) satisfies [x^(2*n)] A(x)^(3*n) = 3 and [x^(2*n+1)] A(x)^(3*n+1) = [x^(2*n+1)] A(x)^(3*n+2) for n >= 1.
%C Let C(x) = 1 + x*C(x)^2 be the g.f. of the Catalan numbers (A000108), then
%C (1) [x^(2*n)] 1/C(-x)^(3*n) = 0 for n >= 1, and
%C (2) [x^(2*n+1)] 1/C(-x)^(3*n+1) = [x^(2*n+1)] 1/C(-x)^(3*n+2) = 0 for n >= 1.
%C The g.f. A(x) of this sequence satisfies similar conditions, with the surprisingly simple formula [x^(2*n+1)] A(x)^(3*n+1) = (-1)^n * (3*n+2) * Product_{k=1..n} (3*k + 1) for n >= 1, a conjecture which has been verified for the initial 1001 terms. Compare with A376225, the dual of this sequence.
%H Paul D. Hanna, <a href="/A377095/b377095.txt">Table of n, a(n) for n = 0..502</a>
%F G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
%F (1) [x^(2*n)] A(x)^(3*n) = 3 for n >= 1.
%F (2) [x^(2*n+1)] A(x)^(3*n+1) = [x^(2*n+1)] A(x)^(3*n+2) for n >= 1.
%F (3) [x^(2*n+1)] A(x)^(3*n+1) = (-1)^n * (3*n+2) * Product_{k=1..n} (3*k + 1) for n >= 1 (conjecture).
%e G.f.: A(x) = 1 + x - 6*x^3 + 28*x^4 - 49*x^5 - 209*x^6 + 1945*x^7 - 6300*x^8 - 4446*x^9 + 151432*x^10 - 743536*x^11 + 988060*x^12 + ...
%e RELATED TABLES.
%e The table of coefficients of x^k in A(x)^n begins
%e n\k 0 1 2 3 4 5 6 7 8
%e 1: [1, 1, 0, -6, 28, -49, -209, 1945, -6300, ...];
%e 2: [1, 2, 1, -12, 44, -42, -480, 3136, -7338, ...];
%e 3: [1, 3, 3, -17, 48, 3, -729, 3534, -4749, ...];
%e 4: [1, 4, 6, -20, 41, 68, -896, 3212, -148, ...];
%e 5: [1, 5, 10, -20, 25, 136, -945, 2325, 5010, ...];
%e 6: [1, 6, 15, -16, 3, 192, -863, 1080, 9534, ...];
%e 7: [1, 7, 21, -7, -21, 224, -658, -293, 12565, ...];
%e 8: [1, 8, 28, 8, -42, 224, -356, -1568, 13609, ...];
%e 9: [1, 9, 36, 30, -54, 189, 3, -2547, 12537, ...];
%e 10: [1, 10, 45, 60, -50, 122, 370, -3080, 9555, ...];
%e 11: [1, 11, 55, 99, -22, 33, 693, -3080 5148, ...];
%e 12: [1, 12, 66, 148, 39, -60, 924, -2532, 3, ...];
%e 13: [1, 13, 78, 208, 143, -130, 1027, -1495, -5083, 50960, ...];
%e 14: [1, 14, 91, 280, 301, -140, 987, -96, -9303, 50960, ...];
%e 15: [1, 15, 105, 365, 525, -42, 820, 1485, -11940, 42895, 3, ...]; ...
%e in which we see that [x^(2*n)] A(x)^(3*n) = 3 for n >= 1.
%e Also, [x^(2*n+1)] A(x)^(3*n+1) = [x^(2*n+1)] A(x)^(3*n+2) for n >= 1;
%e these coefficients begin
%e [-20, 224, -3080, 50960, -990080, 22131200, -559919360, 15823808000, ...],
%e and appear to equal (-1)^n * (3*n+2) * Product_{k=1..n} (3*k + 1) for n >= 1.
%o (PARI) {a(n) = my(V=[1,1,0,0],A); for(i=0,n, V=concat(V,0); A = Ser(V); m=(#V-1)\2-1;
%o V[#V-2] = if(#V%2 == 1, -(polcoef(A^(3*m), 2*m) - 3)/(3*m), polcoef(A^(3*m+1), 2*m+1) - polcoef(A^(3*m+2), 2*m+1) ) );V[n+1]}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A376225, A377096, A377097.
%K sign
%O 0,4
%A _Paul D. Hanna_, Oct 27 2024