login
a(n) = rad(n)^binomial(bigomega(n) + omega(n) - 1, omega(n)), where rad = A007947, bigomega = A001222, and omega = A001221.
3

%I #10 Nov 14 2024 23:48:58

%S 1,2,3,4,5,216,7,8,9,1000,11,46656,13,2744,3375,16,17,46656,19,

%T 1000000,9261,10648,23,60466176,25,17576,27,7529536,29,

%U 590490000000000,31,32,35937,39304,42875,60466176,37,54872,59319,10000000000,41,17080198121677824,43,113379904

%N a(n) = rad(n)^binomial(bigomega(n) + omega(n) - 1, omega(n)), where rad = A007947, bigomega = A001222, and omega = A001221.

%C Product of row n of A377070.

%H Michael De Vlieger, <a href="/A377073/b377073.txt">Table of n, a(n) for n = 1..6719</a>

%F For prime power p^k, k >= 0, a(p^k) = p^k.

%F For n in A024619, a(n) > n.

%t Table[Apply[Times, FactorInteger[n][[All, 1]]]^Binomial[PrimeOmega[n] + PrimeNu[n] - 1, PrimeNu[n]], {n, 44}]

%Y Cf. A000203, A001221, A001222, A007947, A024619, A244974, A376248, A377070.

%K nonn,easy

%O 1,2

%A _Michael De Vlieger_, Oct 27 2024