login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The n-th perfect-power A001597(n) minus the n-th prime-power A246655(n).
2

%I #11 Oct 27 2024 12:12:13

%S -1,1,4,4,9,17,18,21,23,33,47,62,77,96,98,99,113,137,159,175,182,196,

%T 207,236,265,282,297,333,370,411,433,448,493,536,579,628,681,734,791,

%U 848,879,899,962,1028,1094,1159,1192,1220,1293,1364,1437,1514,1559,1591

%N The n-th perfect-power A001597(n) minus the n-th prime-power A246655(n).

%C Perfect-powers (A001597) are numbers with a proper integer root.

%F a(n) = A001597(n) - A246655(n).

%t perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;

%t per=Select[Range[1000],perpowQ];

%t per-NestList[NestWhile[#+1&, #+1,!PrimePowerQ[#]&]&,2,Length[per]-1]

%o (Python)

%o from sympy import mobius, primepi, integer_nthroot

%o def A377044(n):

%o def bisection(f,kmin=0,kmax=1):

%o while f(kmax) > kmax: kmax <<= 1

%o while kmax-kmin > 1:

%o kmid = kmax+kmin>>1

%o if f(kmid) <= kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o return kmax

%o def f(x): return int(n-1+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))

%o def g(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))

%o return bisection(f,n,n)-bisection(g,n,n) # _Chai Wah Wu_, Oct 27 2024

%Y Including 1 with the prime-powers gives A377043.

%Y A000015 gives the least prime-power >= n.

%Y A000040 lists the primes, differences A001223.

%Y A000961 lists the powers of primes, differences A057820, A093555, A376596.

%Y A001597 lists the perfect-powers, differences A053289, seconds A376559.

%Y A007916 lists the non-perfect-powers, differences A375706, seconds A376562.

%Y A024619 lists the non-prime-powers, differences A375735, seconds A376599.

%Y A025475 lists numbers that are both a perfect-power and a prime-power.

%Y A031218 gives the greatest prime-power <= n.

%Y A080101 counts prime-powers between primes (exclusive).

%Y A106543 lists numbers that are neither a perfect-power nor a prime-power.

%Y A131605 lists perfect-powers that are not prime-powers.

%Y A246655 lists the prime-powers, complement A361102, A375708.

%Y Prime-power runs: A373675, min A373673, max A373674, length A174965.

%Y Prime-power antiruns: A373576, min A120430, max A006549, length A373671.

%Y Cf. A023055, A045542, A052410, A053707, A069623, A110969, A216765, A376560, A376561, A377051.

%K sign

%O 1,3

%A _Gus Wiseman_, Oct 25 2024