login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377032
Odd numbers k such that A000045(k)/A000005(k) is an integer.
2
1, 3, 405, 625, 1875, 50625, 354375, 556875, 658125, 860625, 961875, 1164375, 1468125, 1500625, 1569375, 1873125, 2075625, 2176875, 2379375, 2683125, 2986875, 3088125, 3391875, 3594375, 3695625, 3720087, 3999375, 4201875, 4501875, 4505625, 4910625, 5113125, 5214375, 5416875, 5518125, 5720625
OFFSET
1,2
COMMENTS
Odd numbers k such that Fibonacci(k) is divisible by tau(k).
Includes 15^4 * p for primes p > 5.
LINKS
EXAMPLE
a(3) = 405 is a term because 405 = 3^4 * 5 is odd, tau(405) = 10, and Fibonacci(405) = 1952132532477489958194625524584538730388053593825001030592563956919572392152809678530 is divisible by 10.
MAPLE
filter:= proc(n) uses LinearAlgebra:-Modular; local t, Mt, dt;
t:= numtheory:-tau(n);
if t < 2^25 then Mt:= Mod(t, M, float[8]) else Mt:= Mod(t, M, integer) fi;;
MatrixPower(t, M, n)[1, 2] = 0
end proc:
filter(1):= true:
select(filter, [seq(i, i=1..600000, 2)]);
CROSSREFS
Intersection of A160684 and A005408.
Sequence in context: A203563 A181990 A198666 * A330014 A305664 A152517
KEYWORD
nonn
AUTHOR
Robert Israel, Oct 14 2024
STATUS
approved