Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #14 Oct 14 2024 00:10:01
%S 2,3,9,219,89,707,7139,17397,127107,185573,170099,8513673,3730629,
%T 9645947,20878187,435128997,413502597,7180622897,28071202809,
%U 4197184407,53159437779,72827487477,408466487673,1622948986427,1009480191957,50924645281527,141362538039039
%N a(n) = (A376907(n) - 10^(n-1))/3.
%t a[n_]:=(Module[{k=1}, While[!PrimeQ[m=3k^2+3k+1]||IntegerLength[m]<n, k++]; m]-10^(n-1))/3; Array[a, 15]
%o (Python)
%o from itertools import count
%o from math import isqrt
%o from sympy import isprime
%o def A376933(n):
%o for k in count(isqrt((((a:=10**(n-1))<<2)-1)//12)):
%o m = 3*k*(k+1)+1
%o if m >= a and isprime(m):
%o return (m-a)//3 # _Chai Wah Wu_, Oct 13 2024
%Y Cf. A011557, A376907.
%K nonn,base,more
%O 1,1
%A _Stefano Spezia_, Oct 11 2024
%E a(21)-a(27) from _Chai Wah Wu_, Oct 13 2024