login
A376929
Products of 5 distinct primes that are sandwiched between sphenic numbers.
1
50610, 52206, 63546, 65190, 71890, 73830, 77406, 84930, 89310, 89870, 90390, 92598, 98210, 116754, 119210, 120990, 123410, 125994, 131054, 132430, 132870, 137410, 140998, 141702, 144430, 148190, 150306, 151810, 159942, 160854, 162470, 164406, 165110, 167314, 170562, 172938, 174306, 176946, 185658
OFFSET
1,1
COMMENTS
All terms are even.
Dickson's conjecture implies that there are infinitely many terms, e.g. there should be infinitely many k such that p = 241 + 104533*k, q = 229 + 99330*k, and r = 107 + 46410*k are all prime, and then 210*p is a term (with 210*p = 2*3*5*7*p, 210*p-1 = 13*17*q, and 210*p+1 = 11*43*r). - Robert Israel, Nov 12 2024
LINKS
EXAMPLE
50610 is a term because 50610=2*3*5*7*241 is the product of five distinct primes and 50609=13*17*229, 50611=11*43*107 are sphenic numbers.
52206 is a term because 52206=2*3*7*11*113 is the product of five distinct primes and 52205=5*53*197, 52207=17*37*83 are sphenic numbers.
MAPLE
filter:= proc(n) local F;
F:= ifactors(n)[2];
if F[.., 2] <> [1$5] then return false fi;
F:= ifactors(n-1)[2];
if F[.., 2] <> [1$3] then return false fi;
F:= ifactors(n+1)[2];
F[.., 2] = [1$3]
end proc:
select(filter, [seq(i, i=2..2*10^5, 4)]); # Robert Israel, Nov 12 2024
MATHEMATICA
SequencePosition[Map[#[[;; , 2]] &, FactorInteger[Range[200000]]], {{1, 1, 1}, {1, 1, 1, 1, 1}, {1, 1, 1}}][[;; , 1]] + 1 (* Amiram Eldar, Oct 11 2024 *)
CROSSREFS
Intersection of A046387 and 2*A376734.
Sequence in context: A317285 A253032 A251486 * A268469 A250442 A183824
KEYWORD
nonn
AUTHOR
Massimo Kofler, Oct 11 2024
STATUS
approved