login
A376905
Lexicographically earliest sequence of distinct positive integers with a(1) multiples of a number b(1) followed by a(2) multiples of a number b(2) etc.
4
1, 2, 4, 3, 6, 9, 12, 5, 10, 15, 7, 14, 21, 28, 35, 42, 8, 16, 24, 32, 40, 48, 56, 64, 72, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 13, 26, 39, 52, 65, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 18, 36, 54, 90, 108, 126, 144, 162, 180, 198, 216
OFFSET
1,2
COMMENTS
This sequence combines features of Golomb's sequence (A001462) and A361748.
This sequence is a permutation of the positive integers with inverse A376904.
This sequence can also be seen as an irregular table whose n-th row contains a(n) multiples of its leading term.
EXAMPLE
The first terms/rows are:
n a(n) b(n) n-th row
- ---- ---- -------------------------------------------------
1 1 1 1
2 2 2 2, 4
3 4 3 3, 6, 9, 12
4 3 5 5, 10, 15
5 6 7 7, 14, 21, 28, 35, 42
6 9 8 8, 16, 24, 32, 40, 48, 56, 64, 72
7 12 11 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132
8 5 13 13, 26, 39, 52, 65
9 10 17 17, 34, 51, 68, 85, 102, 119, 136, 153, 170
PROG
(Python)
from itertools import count, islice
def A376905gen(): # generator of terms
aset, alst, m = {1, 2, 4}, [1, 2, 4], 3
yield from [1, 2, 4]
for n in count(3):
nlst = []
for k in count(m, m):
if k not in aset:
nlst.append(k)
if len(nlst) == alst[n-1]:
break
yield from nlst
alst.extend(nlst)
aset.update(nlst)
while m in aset: m += 1
print(list(islice(A376905gen(), 70))) # Michael S. Branicky, Oct 16 2024
(PARI) \\ See Links section.
CROSSREFS
Sequence in context: A338919 A348018 A363504 * A332878 A376903 A113233
KEYWORD
nonn,tabf
AUTHOR
Rémy Sigrist, Oct 08 2024
STATUS
approved