login
A376880
Numbers that have Zumkeller divisors.
6
6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270
OFFSET
1,1
COMMENTS
d is a Zumkeller divisor of n if and only if d is a divisor of n and is Zumkeller (A083207).
The first difference from A023196 is 748, which is abundant (sigma(748) = 1512 > 2*748) but has no Zumkeller divisors.
LINKS
EXAMPLE
The Zumkeller divisors of 80 are {20, 40, 80}, so 80 is a term.
The divisors of 81 are {1, 3, 9, 27, 81}, none of which is Zumkeller, so 81 is not a term.
MAPLE
with(NumberTheory):
isZumkeller := proc(n) option remember; local s, p, i, P;
s := SumOfDivisors(n);
if s::odd or s < n*2 then false else
P := mul(1 + x^i, i in Divisors(n));
is(0 < coeff(P, x, s/2)) fi end:
select(n -> ormap(isZumkeller, Divisors(n)), [seq(1..270)]);
MATHEMATICA
znQ[n_]:=Length[Select[{#, Complement[Divisors[n], #]}&/@Most[Rest[ Subsets[ Divisors[ n]]]], Total[#[[1]]]==Total[#[[2]]]&]]>0; zn=Select[Range[300], znQ] (* zn from A083207 *) ; Select[Range[270], IntersectingQ[Divisors[#], zn]&] (* James C. McMahon, Oct 23 2024 *)
CROSSREFS
Positions of terms > 1 in A376882, terms > 0 in A378446.
Sequence in context: A326133 A177052 A023196 * A204829 A005835 A007620
KEYWORD
nonn
AUTHOR
Peter Luschny, Oct 20 2024
EXTENSIONS
Incorrect comment removed by Peter Luschny, Dec 02 2024
STATUS
approved