%I #8 Oct 23 2024 01:12:35
%S 748,7544,10184,56816,61904,62416,66928,69488,73616,102416,195316,
%T 292604,297908,342225,394144,517024,543968,566236,569228,575212,
%U 578204,588676,596156,605132,606628,614108,615604,618596,620092,627572,638044,640096,641036,642532
%N Numbers that are abundant (A005101) and have no Zumkeller divisors.
%C d is a Zumkeller divisor of n if and only if d is a divisor of n and is Zumkeller (A083207).
%p # The function 'isZumkeller' is defined in A376880.
%p select(n -> SumOfDivisors(n) > 2*n and not ormap(isZumkeller, Divisors(n)), [seq(1..11000)]);
%Y Cf. A005101, A376880, A083207.
%K nonn
%O 1,1
%A _Peter Luschny_, Oct 20 2024