login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n, k) = n^k * n! * [x^k][y^n]((sec(y) + tan(y)) * exp(x*y)).
1

%I #11 Nov 13 2024 01:54:11

%S 1,1,1,1,4,4,2,9,27,27,5,32,96,256,256,16,125,500,1250,3125,3125,61,

%T 576,2700,8640,19440,46656,46656,272,2989,16464,60025,168070,352947,

%U 823543,823543,1385,17408,109312,458752,1433600,3670016,7340032,16777216,16777216

%N Triangle read by rows: T(n, k) = n^k * n! * [x^k][y^n]((sec(y) + tan(y)) * exp(x*y)).

%F T(n, k) = (-1)^binomial(n-k, 2)*n^k*binomial(n, k)*(Euler(n-k) - Euler(n-k, 0)*2^(n - k))) for 0 <= k < n and n^n for n = k.

%F T(n, k) = n^k*A109449(n, k) = n^k*binomial(n, k)*A000111(n - k).

%e Triangle starts:

%e [0] 1;

%e [1] 1, 1;

%e [2] 1, 4, 4;

%e [3] 2, 9, 27, 27;

%e [4] 5, 32, 96, 256, 256;

%e [5] 16, 125, 500, 1250, 3125, 3125;

%e [6] 61, 576, 2700, 8640, 19440, 46656, 46656;

%e [7] 272, 2989, 16464, 60025, 168070, 352947, 823543, 823543;

%e [8] 1385, 17408, 109312, 458752, 1433600, 3670016, 7340032, 16777216, 16777216;

%p P := n -> coeff(series((sec(y) + tan(y)) * exp(x*y), y, 12), y, n):

%p seq(seq(coeff(P(n), x, k) * n^k * n!, k = 0..n), n = 0..8);

%p T := (n, k) -> ifelse(n = k, n^n, (-1)^binomial(n - k, 2)*n^k*binomial(n, k)*(euler(n - k) - euler(n - k, 0)*2^(n - k))):

%p seq(print([n], seq(T(n, k), k = 0..n)), n = 0..8);

%o (Python)

%o from math import comb, isqrt

%o from sympy import bernoulli, euler

%o def A000111(n): return abs(((1<<n+1)-1<<n+1)*bernoulli(n+1)//(n+1) if n&1 else euler(n))

%o def A376878(n): return comb(a:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),b:=n-comb(a+1,2))*a**b*A000111(a-b) # _Chai Wah Wu_, Nov 13 2024

%Y Cf. A000111, A000312, A079901, A109449, A292976 (row sums).

%K nonn,tabl

%O 0,5

%A _Peter Luschny_, Oct 13 2024