%I #15 Oct 05 2024 01:55:04
%S 1,4,31,283,2770,28204,294568,3131650,33732883,367035814,4025600941,
%T 44439461275,493218155119,5498860571026,61543476786067,
%U 691095770653867,7783168304357434,87878978740300960,994484816394177214,11276915136560900662,128106749179069022344
%N Expansion of 1/((1 - x)^3 - 9*x)^(1/3).
%H Seiichi Manyama, <a href="/A376802/b376802.txt">Table of n, a(n) for n = 0..936</a>
%F a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(n+2*k,n-k).
%o (PARI) my(N=30, x='x+O('x^N)); Vec(1/((1-x)^3-9*x)^(1/3))
%Y Partial sums of A361895.
%Y Cf. A098536, A376803, A376804.
%Y Cf. A376805, A376806.
%Y Cf. A004987.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Oct 04 2024