%I #21 Nov 04 2024 09:30:31
%S 0,0,2,7,69,13,47,58,9,43,3553,100,7019,14082,68097,14526,149677,2697,
%T 481054,979719,631894,29811,25340978,50574254,7510843,210829337,
%U 67248861,224076286,910615647,931510269,452499644,2880203722,396680865,57954439970,77572822440,35394938648
%N Position of first zero in the n-th differences of the primes, or 0 if it does not appear.
%C Do the k-th differences of the primes contain a zero for all k > 1?
%H Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A376678.py">Python program</a>.
%F a(n) = A000720(A349643(n)) for n >= 2. - _Pontus von Brömssen_, Oct 17 2024
%e The third differences of the primes begin:
%e -1, 2, -4, 4, -4, 4, 0, -6, 8, ...
%e so a(3) = 7.
%t nn=100000;
%t u=Table[Differences[Select[Range[nn],PrimeQ],k],{k,2,16}];
%t mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
%t m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]
%Y If 1 is considered prime (A008578) we get A376855.
%Y The zeros of second differences are A064113, complement A333214.
%Y This is the position at which 0 first appears in row n of A095195.
%Y For composite instead of prime we have A377037.
%Y For squarefree instead of prime we have A377042, nonsquarefree A377050.
%Y For prime-power instead of prime we have A377055.
%Y A000040 lists the primes, first differences A001223, second A036263.
%Y Cf. A000720, A007442, A030016, A065890, A084758, A140119, A258025, A258026, A333254, A349643, A376681, A376682, A376683.
%K nonn
%O 0,3
%A _Gus Wiseman_, Oct 14 2024
%E a(17)-a(32) from _Pontus von Brömssen_, Oct 17 2024
%E a(33)-a(35) from _Lucas A. Brown_, Nov 03 2024