login
A376605
Primes p such that if q and r are the next two primes, (p - 1)^2 + 1, (q - 1)^2 + 1 and (r - 1)^2 + 1 are all prime.
2
2, 3, 5, 241, 5077, 17317, 50207, 55487, 63977, 82021, 90007, 118927, 141961, 183577, 185551, 191227, 209401, 218521, 267667, 296017, 312107, 324991, 331127, 337861, 363901, 429161, 502217, 538127, 540901, 544837, 567067, 593707, 593711, 669551, 694357, 722411, 731261, 881407, 937511, 969457
OFFSET
1,1
LINKS
FORMULA
a(n) = A000040(A376522(n)).
EXAMPLE
a(4) = 241 is a term because the next two primes are 251 and 257, and (241-1)^2 + 1 = 57601, (251-1)^2 + 1 = 62501, and (257-1)^2 + 1 = 65537 are all prime.
MAPLE
P:= select(isprime, [2, seq(i, i=3..10^6, 2)]):
J:= select(i -> isprime((P[i]-1)^2+1), [$1..nops(P)]):
P[J[select(i -> J[i+2]=J[i]+2, [$1..nops(J)-2])]];
PROG
(PARI) isok(p) = my(q=nextprime(p+1), r=nextprime(q+1)); isprime((p-1)^2+1) && isprime((q-1)^2+1) && isprime((r-1)^2+1); \\ Michel Marcus, Sep 30 2024
CROSSREFS
Sequence in context: A042067 A333803 A338262 * A042579 A033090 A303371
KEYWORD
nonn
AUTHOR
Robert Israel, Sep 29 2024
STATUS
approved