login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376605
Primes p such that if q and r are the next two primes, (p - 1)^2 + 1, (q - 1)^2 + 1 and (r - 1)^2 + 1 are all prime.
2
2, 3, 5, 241, 5077, 17317, 50207, 55487, 63977, 82021, 90007, 118927, 141961, 183577, 185551, 191227, 209401, 218521, 267667, 296017, 312107, 324991, 331127, 337861, 363901, 429161, 502217, 538127, 540901, 544837, 567067, 593707, 593711, 669551, 694357, 722411, 731261, 881407, 937511, 969457
OFFSET
1,1
LINKS
FORMULA
a(n) = A000040(A376522(n)).
EXAMPLE
a(4) = 241 is a term because the next two primes are 251 and 257, and (241-1)^2 + 1 = 57601, (251-1)^2 + 1 = 62501, and (257-1)^2 + 1 = 65537 are all prime.
MAPLE
P:= select(isprime, [2, seq(i, i=3..10^6, 2)]):
J:= select(i -> isprime((P[i]-1)^2+1), [$1..nops(P)]):
P[J[select(i -> J[i+2]=J[i]+2, [$1..nops(J)-2])]];
PROG
(PARI) isok(p) = my(q=nextprime(p+1), r=nextprime(q+1)); isprime((p-1)^2+1) && isprime((q-1)^2+1) && isprime((r-1)^2+1); \\ Michel Marcus, Sep 30 2024
CROSSREFS
Sequence in context: A042067 A333803 A338262 * A042579 A033090 A303371
KEYWORD
nonn
AUTHOR
Robert Israel, Sep 29 2024
STATUS
approved