login
A376566
Lexicographically earliest sequence of positive integers such that for any n > 0, there is an even number of k's such that 1 <= k < n and a(n) divides a(k).
1
1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 2, 1, 3, 1, 7, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 3, 1, 10, 1, 2, 1, 5, 1, 11, 1, 12, 1, 2, 1, 3, 1, 4, 1, 2, 1, 6, 1, 2, 1, 3, 1, 13, 1, 14, 1, 2, 1, 7, 1, 15, 1, 3, 1, 5, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1
OFFSET
1,2
COMMENTS
The sequence is well defined as we can always extend it with a number greater than any prior term.
LINKS
FORMULA
a(2*k-1) = 1 for any k > 0.
a(2*A025523(n-1)) = n for any n > 1 (and this is the first occurrence of n in the sequence). - Hugo Pfoertner, Oct 01 2024
EXAMPLE
The first terms, alongside the corresponding k's, are:
n a(n) k's
-- ---- ---------------------------------------------
1 1 None
2 2 None
3 1 1, 2
4 3 None
5 1 1, 2, 3, 4
6 4 None
7 1 1, 2, 3, 4, 5, 6
8 2 2, 6
9 1 1, 2, 3, 4, 5, 6, 7, 8
10 5 None
11 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12 6 None
13 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
14 2 2, 6, 8, 12
15 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
16 3 4, 12
PROG
(PARI) { nb = vector(16); for (n = 1, 86, for (v = 1, oo, if (nb[v]%2==0, print1 (v ", "); fordiv (v, d, nb[d]++; ); break; ); ); ); }
CROSSREFS
Cf. A025523.
Sequence in context: A289508 A364448 A028920 * A260738 A055396 A363486
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Sep 28 2024
STATUS
approved