Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Sep 24 2024 09:29:00
%S 1,2,3,5,6,7,9,11,13,17,19,20,23,25,29,31,37,41,43,47,53,59,61,67,71,
%T 73,77,79,81,83,89,97,101,103,107,109,113,121,127,131,137,139,149,151,
%U 157,163,167,173,179,181,191,193,197,199,208,211,223,227,229,233,239,241
%N Lexicographically earliest strictly increasing sequence of numbers whose partial products are all exponentially 2^n-numbers (A138302).
%C All the primes are terms.
%H Amiram Eldar, <a href="/A376471/b376471.txt">Table of n, a(n) for n = 1..10000</a>
%e 1 * 2 = 2^1 and 1 = 2^0.
%e 1 * 2 * 3 = 6 = 2^1 * 3^1 and 1 = 2^0.
%e 1 * 2 * 3 * 5 * 6 = 180 = 2^2 * 3^2 * 5^1, 1 = 2^0 and 2 = 2^1.
%t expPow2Q[n_] := AllTrue[FactorInteger[n][[;; , 2]], # == 2^IntegerExponent[#, 2] &]; a[1] = 1; a[n_] := a[n] = Module[{prod = Times @@ Array[a, n - 1], k = a[n - 1] + 1}, While[! expPow2Q[prod*k], k++]; k]; Array[a, 100]
%o (PARI) ispow2(n) = if(n == 0, 1, n >> valuation(n, 2) == 1);
%o lista(pindmax) = {my(pmax = prime(pindmax), v = vector(pindmax), f, pind, prd); print1(1, ", "); for(k = 2, pmax, f = factor(k); pind = apply(x -> primepi(x), f[,1]); for(i = 1, #pind, v[pind[i]] += f[i, 2]); if(vecprod(apply(x -> ispow2(x), v)) > 0, print1(k, ", "), for(i = 1, #pind, v[pind[i]] -= f[i, 2])));}
%Y Disjoint union of A000040 and A376472.
%Y Similar sequences:
%Y Sequence | Partial products are in | Exponents are in
%Y --------------+-------------------------+------------------------
%Y A050376 | A037992 | A000225 \ {0} (2^n-1)
%Y A089237 | A268335 | A005408 (odd numbers)
%Y {1} U A246551 | A246551 | A000290 \ {0} (squares)
%Y this sequence | A138302 | A000079 (powers of 2)
%K nonn
%O 1,2
%A _Amiram Eldar_, Sep 24 2024