Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Sep 30 2024 12:40:12
%S 0,2,4,6,8,9,11,12,14,16,18,20,22,24,25,27,29,30,32,34,36,38,40,42,44,
%T 46,48,49,51,53,55,56,58,60,62,64,66,68,70,72,74,76,78,80,81,83,85,87,
%U 89,90,92,94,96,98,99,100,102,104,106,108,109,110,112,114
%N Positions of numbers in A376450 that end in 0.
%C This sequence and A376453 partition the positive integers.
%C Conjecture: if (b(n)) denotes the complement of this sequence, then {b(n+1)-b(n) : n>=1} = {2,3,4,5}.
%F {a(n+1) - a(n) : n >= 1} = {1,2}.
%t greedy[list_, n_] := Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, n, Reverse[list]]][[2, 1]];
%t seq = Table[Floor[((n + 1)^2)/4], {n, 30}]; (* A002620 *)
%t t1 = Table[FromDigits[greedy[seq, n]], {n, Last[seq]}];
%t d = Map[Last, Map[First, RealDigits[t1, 10]]] (* A376450 *)
%t p0 = Flatten[Position[d, 0]] (* this sequence *)
%t p1 = Flatten[Position[d, 1]] (* A376453 *)
%t (* _Peter J. C. Moses_, Oct 18 2012; from A214973 *)
%Y Cf. A002620, A376450, A376451, A376453.
%K nonn,base
%O 1,2
%A _Clark Kimberling_, Sep 28 2024