Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Nov 17 2024 13:06:59
%S 1,2,30,6469693230,
%T 7799922041683461553249199106329813876687996789903550945093032474868511536164700810
%N a(n) = A276085(A006862(n)), where A276085 is the primorial base log-function, and A006862 is the Euclid numbers, one more than primorials.
%C Numbers k such that when we apply primorial base exp function (A276086) twice to them, the results are squarefree even semiprimes, A100484 after its initial 4. See comments in A377871.
%C a(5)..a(8) have 976, 209, 111, 12051 decimal digits.
%C a(n) is a primorial for those n that are in A014545, that is, when A006862(n) is one of the primorial primes, A018239.
%H Antti Karttunen, <a href="/A376416/b376416.txt">Table of n, a(n) for n = 0..7</a>
%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>
%F a(n) = A276085(1+A002110(n)) = A276085(A276085(A100484(1+n))).
%F For n >= 1, A276087(a(n)) = A100484(1+n).
%o (PARI)
%o A276085(n) = { my(f = factor(n), pr=1, i=1, s=0); for(k=1, #f~, while(i <= primepi(f[k, 1])-1, pr *= prime(i); i++); s += f[k, 2]*pr); (s); };
%o A376416(n) = A276085(1+prod(i=1,n,prime(i)));
%Y Cf. A002110, A006862, A014545, A018239, A100484, A276085, A276086, A276087, A377871.
%K nonn
%O 0,2
%A _Antti Karttunen_, Nov 17 2024