login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 0, and for n > 0, a(n) = a(n-1) + A019565(a(n-1)), where A019565 is the base-2 exp-function.
3

%I #9 Nov 08 2024 17:58:23

%S 0,1,3,9,23,353,10519,12086209,1174153011340170531,

%T 73582975079922326904310062621361286634299329277087298285

%N a(0) = 0, and for n > 0, a(n) = a(n-1) + A019565(a(n-1)), where A019565 is the base-2 exp-function.

%C a(10) has 272 digits and a(11) has 1523 digits.

%C By induction, it is easy to see that formula a(n) = A048675(A376406(n)) implies that from the second term onward, this sequence gives the partial sums of A376406. See comments and examples in that sequence.

%H Antti Karttunen, <a href="/A376407/b376407.txt">Table of n, a(n) for n = 0..10</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F a(n) = A048675(A376406(n)).

%F a(0) = 0; and for n > 0, a(n) = a(n-1) + A376406(n-1) = Sum_{i=0..n-1} A376406(i).

%o (PARI)

%o A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };

%o A376407(n) = if(!n,0,my(x=A376407(n-1)); x+A019565(x));

%Y Cf. A019565, A048675, A376406, A376409.

%Y Cf. also A376403 (an analogous sequence for A276076).

%K nonn

%O 0,3

%A _Antti Karttunen_, Nov 04 2024