login
A376316
Number of primes between successive primitive practical numbers. That is, number of primes p such that A267124(n) < p <= A267124(n+1).
0
1, 2, 5, 1, 1, 3, 5, 3, 2, 4, 7, 12, 0, 1, 2, 6, 3, 0, 4, 0, 1, 3, 2, 0, 1, 3, 1, 2, 2, 3, 8, 1, 1, 1, 3, 3, 1, 1, 1, 2, 2, 2, 8, 3, 4, 3, 3, 4, 1, 7, 2, 0, 7, 1, 1, 0, 4, 4, 4, 4, 7, 1, 12, 1, 1, 1, 0, 5, 3, 2, 2, 3, 1, 4, 3, 2, 0, 2, 4, 3, 0, 9, 1, 1, 1, 3, 1, 1, 2, 1, 2, 5, 13, 0, 1, 4, 6, 0, 4
OFFSET
1,2
EXAMPLE
a(3) = 5 because between the 3rd and 4th primitive practical numbers, namely 6 and 20 there are 5 primes. They are 7, 11, 13, 17 and 19.
MATHEMATICA
lst=Last/@ReadList["https://oeis.org/A267124/b267124.txt", {Number, Number}]; seq=Table[PrimePi[lst[[n+1]]]-PrimePi[lst[[n]]], {n, 1, Length@lst-1}]; seq[[1;; 100]]
CROSSREFS
Sequence in context: A092134 A181779 A024548 * A197737 A189824 A197814
KEYWORD
nonn
AUTHOR
Frank M Jackson, Sep 22 2024
STATUS
approved