login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive numbers k such that 2*k^k is a cube.
1

%I #29 Oct 01 2024 10:52:31

%S 2,4,128,256,686,1372,2000,4000,4394,8192,8788,13718,16384,21296,

%T 27436,31250,42592,43904,59582,62500,78608,87808,101306,119164,128000,

%U 157216,159014,194672,202612,235298,256000,281216,318028,332750,389344,390224,453962,470596

%N Positive numbers k such that 2*k^k is a cube.

%C {a(n)} UNION A376291 = positive numbers k such that k^k is not a cube and can be expressed as (x^3 + y^3)/2 for nonnegative integers x, y.

%C All terms are even.

%H Chai Wah Wu, <a href="/A376315/b376315.txt">Table of n, a(n) for n = 1..897</a>

%o (Python)

%o from itertools import count, islice

%o from sympy import factorint

%o def A376315_gen(startvalue=2): # generator of terms >= startvalue

%o for k in count(max(startvalue+(startvalue&1),2),2):

%o f = {p:k*e for p,e in factorint(k).items()}

%o f[2] += 1

%o if not any(v%3 for v in f.values()):

%o yield k

%o A376315_list = list(islice(A376315_gen(),30))

%Y Cf. A376291, A376279.

%K nonn

%O 1,1

%A _Chai Wah Wu_, Sep 20 2024