%I #11 Sep 22 2024 18:00:51
%S 11,13,17,19,31,33,37,39,51,53,55,57,59,65,71,73,77,79,85,91,93,95,97,
%T 99,102,106,110,111,113,114,117,118,119,130,131,133,137,139,142,146,
%U 151,153,154,155,157,158,159,165,170,171,173,177,179,182,185,186,190,191,193,194,195,197,198,199
%N Numbers k such that no 7-smooth number ends in k.
%C Numbers k such that A376301(k) = -1.
%C Numbers k such that every number ending in k is divisible by a prime >= 11.
%C If i*k is a term where 2 <= i <= 9 and i*k has the same number of digits as k, then k is a term.
%H Robert Israel, <a href="/A376303/b376303.txt">Table of n, a(n) for n = 1..10000</a>
%e The multiplicative order of 3 mod 100 is 20, and that of 7 is 4. Of the 36 numbers from 10 to 99 that are coprime to 10, the only ones congruent to some 3^i * 7^j (mod 100) are those where i = 0 to 19 and j = 0 to 3: 21, 23, 27, 29, 41, 43, 47, 49, 61, 63, 67, 69, 81, 83, 87, and 89. The remaining 20: 11, 13, 17, 19, 31, 33, 37, 39, 51, 53, 57, 59, 71, 73, 77, 79, 91, 93, 97, 99, are members of this sequence.
%p dmax:= 3: # for terms < 10^dmax
%p N:= 10^dmax-1: R:= NULL:
%p with(priqueue):
%p V[0]:= 10:
%p for d from 1 to dmax do
%p A:= Array(0..10^d-1, -1);
%p initialize(pq);
%p insert([-1, 0, 0, 0, 0], pq);
%p while pq[0] <> 0 do
%p t:= extract(pq);
%p x:= -t[1];
%p xd:= x mod 10^d;
%p if A[xd] = -1 then
%p A[xd]:= x;
%p insert([-7*x, t[2], t[3], t[4], t[5]+1], pq);
%p if t[5] = 0 then
%p insert([-5*x, t[2], t[3], t[4]+1, 0], pq);
%p if t[4] = 0 then
%p insert([-3*x, t[2], t[3]+1, 0, 0], pq);
%p if t[3] = 0 then
%p insert([-2*x, t[2]+1, 0, 0, 0], pq);
%p fi fi fi fi od;
%p R:= R, op(select(t -> A[t] = -1, {$10^(d-1)..10^d-1}))):
%p od:
%p R;
%Y Cf. A002473, A376301.
%K nonn,base
%O 1,1
%A _Robert Israel_, Sep 19 2024