Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Oct 01 2024 12:19:42
%S 1,2,6,7,14,18,27,34,51,59,91,96,134,136,208,203,285,261,385,373,493,
%T 487,650,616,818,750,949,947,1240,1146,1517,1397,1766,1662,2089,1824,
%U 2443,2309,2723,2638,3311,2977,3801,3482,4024,3962,4900,4382,5525,5023,6078
%N The number of solutions x<=y<=z<=w in Z/(n) of the equation x+y+z+w = x*y*z*w.
%H Chai Wah Wu, <a href="/A376296/b376296.txt">Table of n, a(n) for n = 1..1351</a>
%p a:=proc(n)
%p local x,y,z,w,N;
%p N:=0:
%p for x from 0 to n-1 do
%p for y from x to n-1 do
%p for z from y to n-1 do
%p for w from z to n-1 do
%p if (x+y+z+w-x*y*z*w) mod n = 0 then N:=N + 1; fi;
%p od:
%p od:
%p od:
%p od:
%p N;
%p end:
%o (Python)
%o def A376296(n):
%o c = 0
%o for x in range(n):
%o for y in range(x,n):
%o xy,xyp = x*y%n,(x+y)%n
%o for z in range(y,n):
%o xyz, xyzp = xy*z%n-1,(xyp+z)%n
%o c += sum(not (xyz*w-xyzp)%n for w in range(z,n))
%o return c # _Chai Wah Wu_, Sep 19 2024
%Y Cf. A376183, A180783.
%K nonn
%O 1,2
%A _W. Edwin Clark_, Sep 19 2024