login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376262
Triangle T read by rows: T(n, k) = (n^2 - 4*n - (-1)^n * (n - 4)) / 2 + 4*k - (-1)^n * (1 + (-1)^k).
0
1, 3, 5, 2, 8, 10, 4, 6, 12, 14, 7, 13, 15, 21, 23, 9, 11, 17, 19, 25, 27, 16, 22, 24, 30, 32, 38, 40, 18, 20, 26, 28, 34, 36, 42, 44, 29, 35, 37, 43, 45, 51, 53, 59, 61, 31, 33, 39, 41, 47, 49, 55, 57, 63, 65, 46, 52, 54, 60, 62, 68, 70, 76, 78, 84, 86, 48, 50, 56, 58, 64, 66, 72, 74, 80, 82, 88, 90
OFFSET
1,2
COMMENTS
This triangle seen as a sequence yields a permutation of the natural numbers. Next 8*i-5 odd numbers followed by next 8*i-1 even numbers fill next 2 + 2 rows (x, down, x+2, right, x+4, up, x+6, right, x+8, down, x+10, right, x+12, ...).
FORMULA
T(n, k) = T(n, k-1) + 4 - (-1)^n * (1 + (-1)^k) for 2 <= k <= n.
T(n, k) = T(n, k-2) + 8 for 3 <= k <= n.
T(n, n) = (n^2 + 4*n - (-1)^n * (n - 4)) / 2 - (1 + (-1)^n).
T(2*n-1, n) = 2 * n^2 - n + 1 + (-1)^n.
G.f.: x*y*(1+ 2*x^8*y^4 + x*(2 + 4*y) + x^7*y^3*(3 + 5*y) - x^6*y^2*(8 + 7*y + 2*y^2) - x^2*(3 - y - 3*y^2) + x^4*(6 + 3*y + y^2 + 3*y^3) - x^3*(2 + 9*y + 5*y^2 + 4*y^3) + x^5*y*(1 + y + 5*y^2 - y^3))/((1 - x)^3*(1 + x)^2*(1 - x*y)^3*(1 + x*y)^2). - Stefano Spezia, Sep 18 2024
EXAMPLE
Triangle T(n, k) for 1 <= k <= n starts:
n \k : 1 2 3 4 5 6 7 8 9 10 11 12
======================================================
1 : 1
2 : 3 5
3 : 2 8 10
4 : 4 6 12 14
5 : 7 13 15 21 23
6 : 9 11 17 19 25 27
7 : 16 22 24 30 32 38 40
8 : 18 20 26 28 34 36 42 44
9 : 29 35 37 43 45 51 53 59 61
10 : 31 33 39 41 47 49 55 57 63 65
11 : 46 52 54 60 62 68 70 76 78 84 86
12 : 48 50 56 58 64 66 72 74 80 82 88 90
etc.
PROG
(PARI) T(n, k)=(n^2-4*n-(-1)^n*(n-4))/2+4*k-(-1)^n*(1+(-1)^k)
CROSSREFS
Sequence in context: A282348 A026193 A026143 * A340510 A075626 A152649
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Sep 17 2024
STATUS
approved