login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) = Sum_{n>=0} a(n)*x^n where a(n) = Sum_{k=0..n-1} ( ([x^k] A(x)^n) (mod 2^n) ) for n > 0, with a(0) = 1.
2

%I #17 Sep 17 2024 08:27:28

%S 1,1,3,8,15,49,136,446,815,2045,3833,8717,14272,39260,72840,210072,

%T 340127,791503,1695607,2740397,7948517,14258853,31589187,62871303,

%U 172680120,259553374,491879422,1390281126,3193983644,5509013560,11070386930,27804975886,57398653055,108014137383

%N G.f. A(x) = Sum_{n>=0} a(n)*x^n where a(n) = Sum_{k=0..n-1} ( ([x^k] A(x)^n) (mod 2^n) ) for n > 0, with a(0) = 1.

%C What is the limit of a(n)/(n*2^n) as n grows? For example, a(520)/(520*2^520) = 0.37178628499...

%H Paul D. Hanna, <a href="/A376231/b376231.txt">Table of n, a(n) for n = 0..520</a>

%e G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 15*x^4 + 49*x^5 + 136*x^6 + 446*x^7 + 815*x^8 + 2045*x^9 + 3833*x^10 + 8717*x^11 + 14272*x^12 + ...

%e ILLUSTRATION OF DEFINITION.

%e Set a(0) = 1; for n > 0, term a(n) equals the sum of the residues of the first n coefficients in A(x)^n modulo 2^n, as illustrated below.

%e The table of coefficients of x^k in A(x)^n starts

%e n=1: [1, 1, 3, 8, 15, 49, 136, 446, 815, ...];

%e n=2: [1, 2, 7, 22, 55, 176, 524, 1698, 4347, ...];

%e n=3: [1, 3, 12, 43, 129, 432, 1380, 4581, 13587, ...];

%e n=4: [1, 4, 18, 72, 247, 880, 3006, 10376, 33591, ...];

%e n=5: [1, 5, 25, 110, 420, 1596, 5805, 20950, 72305, ...];

%e n=6: [1, 6, 33, 158, 660, 2670, 10297, 38904, 141573, ...];

%e n=7: [1, 7, 42, 217, 980, 4207, 17136, 67740, 258349, ...];

%e n=8: [1, 8, 52, 288, 1394, 6328, 27128, 112048, 446135, ...];

%e n=9: [1, 9, 63, 372, 1917, 9171, 41250, 177714, 736668, ...];

%e ...

%e from which we take the residues of the coefficient of x^k in A(x)^n modulo 2^n for k = 0..n-1 to form rows of a triangle that begins:

%e A^1 (mod 2): [1];

%e A^2 (mod 4): [1, 2];

%e A^3 (mod 8): [1, 3, 4];

%e A^4 (mod 16): [1, 4, 2, 8];

%e A^5 (mod 32): [1, 5, 25, 14, 4];

%e A^6 (mod 64): [1, 6, 33, 30, 20, 46];

%e A^7 (mod 128): [1, 7, 42, 89, 84, 111, 112];

%e A^8 (mod 256): [1, 8, 52, 32, 114, 184, 248, 176];

%e A^9 (mod 512): [1, 9, 63, 372, 381, 467, 290, 50, 412];

%e ...

%e The row sums of the above triangle generate all the terms of this sequence.

%e SPECIFIC VALUES.

%e A(1/3) = 3.19165654953338695440681583335928571940026307605013927...

%e Summing by columns in the above triangle, A(x) at x = 1/3 equals the series

%e A(1/3) = 1 + 81/162 + 10935/162^2 + 1502469/162^3 + 189737559/162^4 + 15771994461/162^5 + 3592080833679/162^6 + 366658848770517/162^7 + 26092620616963383/162^8 + 3647452065131814669/162^9 + 266473731108842221599/162^10 + 38235892646929415624325/162^11 + 4603705873782929233296327/162^12 + 382148211586497427156392765/162^13 + 54436746171829224258109609263/162^14 + 3004165735518365517122973022005/162^15 + 776638170361137221049441318486615/162^16 + ...

%e A(1/4) = 1.75741768996442511768326999491510596752804202708999837...

%e Summing by columns in the above triangle, A(x) at x = 1/4 equals the series

%e A(1/4) = 1 + 16/48 + 448/48^2 + 11776/48^3 + 319744/48^4 + 4597504/48^5 + 291495424/48^6 + 7282842112/48^7 + 112783994368/48^8 + 3511778478592/48^9 + 54943154970112/48^10 + 1875309044480512/48^11 + 53126556811013632/48^12 + 701084699667237376/48^13 + 28392513835468185088/48^14 + 317012819269037278720/48^15 + 19479870906603281961472/48^16 + 439076694241734531053056/48^17 + 4950820105940741443838464/48^18 + 168210496994570296771552768/48^19 + 1244871541635655380054438400/48^20 + ...

%o (PARI) {a(n) = my(A=[1]);

%o for(m=1,n, A = concat(A, sum(k=0,m-1,Vec(Ser(A)^m)[k+1]%2^m)) );A[n+1]}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A376232.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Sep 16 2024