login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376222
Numbers k such that Sum_{i=1..q-1} d(i)^i is prime, where d(1)<d(2)<...<d(q) are the q divisors of k.
1
4, 21, 27, 39, 57, 77, 183, 189, 203, 205, 219, 237, 253, 371, 387, 391, 417, 489, 565, 611, 655, 667, 669, 675, 687, 749, 767, 799, 831, 849, 897, 921, 955, 1007, 1047, 1135, 1189, 1207, 1349, 1371, 1379, 1407, 1421, 1461, 1469, 1497, 1513, 1569, 1633, 1643, 1659
OFFSET
1,1
COMMENTS
The corresponding primes are in A376223.
EXAMPLE
39 is a term because the 3 first divisors of 39 are {1,3,13} and 1^1 + 3^2 + 13^3 = 2207 is prime.
189 is a term since the 7 first divisors of 189 are {1, 3, 7, 9, 21, 27, 63} and 1^1+3^2+7^3+9^4+21^5+27^6+63^7 = 3939372150671 is prime.
MAPLE
with(numtheory):nn:=1700:
for n from 1 to nn do:
d:=divisors(n):n0:=nops(d):s:=sum(‘d[k]^k’, ‘k’=1..n0-1):
if isprime(s)
then
printf(`%d, `, n):
else
fi:
od:
MATHEMATICA
Select[Range[1700], PrimeQ[Sum[Part[Divisors[#], i]^i, {i, DivisorSigma[0, #]-1}]] &] (* Stefano Spezia, Sep 16 2024 *)
PROG
(PARI) isok(k) = my(d=divisors(k)); isprime(sum(j=1, #d-1, d[j]^j)); \\ Michel Marcus, Sep 16 2024
CROSSREFS
Sequence in context: A042429 A356357 A276400 * A304770 A316513 A273208
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 16 2024
STATUS
approved