login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376198
a(1) = 1, a(2) = 2. Thereafter, let smc and smp denote the smallest missing composite and smallest missing prime. If a(n) is composite, then if a(n) = 2*smp then a(n+1) = smp, otherwise a(n+1) = smc; if a(n) is a prime, then if smp < smc, a(n+1) = smp, otherwise a(n+1) = smc.
12
1, 2, 3, 4, 6, 8, 9, 10, 5, 7, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 13, 17, 19, 23, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 29, 31, 37, 41, 43, 47, 53, 59, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94
OFFSET
1,2
COMMENTS
The composite terms appear in their natural order, as do the primes.
This is a simplified version of A375564 (the difference being in the way the composite numbers are handled: here they appear in order, whereas in A375564 successive composite numbers must have a common gcd greater than 1).
The following table was calculated by Michael S. Branicky on Oct 04 2024.
It shows the beginning, end, and length of the k-th run of successive primes.
a b c : d e f [a = k, b = A376750(k), c = A376751(k),
1 2 2 : 3 3 2 d = A376752(k), e = A376753(k), f = A376754(k)]
2 9 5 : 11 11 3
3 23 13 : 26 23 4
4 52 29 : 59 59 8
5 110 61 : 122 113 13
6 231 127 : 254 251 24
7 472 257 : 514 509 43
8 965 521 : 1042 1039 78
9 1958 1049 : 2099 2099 142
10 3962 2111 : 4222 4219 261
11 7980 4229 : 8458 8447 479
12 16029 8461 : 16922 16921 894
13 32181 16927 : 33854 33851 1674
14 64597 33857 : 67714 67709 3118
15 129574 67723 : 135446 135433 5873
16 259798 135449 : 270899 270899 11102
17 520835 270913 : 541826 541817 20992
18 1043833 541831 : 1083662 1083659 39830
19 2091473 1083689 : 2167378 2167369 75906
20 4190135 2167393 : 4334786 4334777 144652
21 8392863 4334791 : 8669582 8669543 276720
22 16809322 8669593 : 17339186 17339177 529865
23 33661860 17339197 : 34678394 34678381 1016535
24 67402676 34678421 : 69356842 69356839 1954167
25 134952624 69356857 : 138713714 138713711 3761091
26 270177158 138713717 : 277427434 277427431 7250277
27 540861852 277427441 : 554854882 554854873 13993031
28 1082667610 554854889 : 1109709778 1109709709 27042169
29 2167106199 1109709791 : 2219419582 2219419577 52313384
30 4337519113 2219419597 : 4438839194 4438839173 101320082
31 8681255531 4438839259 : 8877678518 8877678499 196422988
32 17374202846 8877678527 : 17755357054 17755357051 381154209
33 34770433922 17755357069 : 35510714138 35510714137 740280217
LINKS
PROG
(Python)
from itertools import islice
from sympy import isprime, nextprime
def agen(): # generator of terms
an, smc, smp = 2, 4, 3
yield from [1, 2]
while True:
if not isprime(an):
an = smp if an == 2*smp else smc
else:
an = smp if smp < smc else smc
if an == smp: smp = nextprime(smp)
else:
smc += 1
while isprime(smc): smc += 1
yield an
print(list(islice(agen(), 87))) # Michael S. Branicky, Oct 03 2024
CROSSREFS
See also A113646 (next composite number).
Sequence in context: A067118 A320503 A138561 * A333841 A231236 A346131
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 03 2024
STATUS
approved