%I #22 Sep 10 2024 20:19:03
%S 1,49,3136,253472,23002083,2200079025,215523459072,21348015504200,
%T 2125390162618116,212104218976916644,21190268970925690248,
%U 2118092209873957381248,211765852717674823741924,21174572668805230623003225,2117363857447354911021280900
%N 10^n-th powerful number.
%H Chai Wah Wu, <a href="/A376092/b376092.txt">Table of n, a(n) for n = 0..16</a>
%F a(n) = A001694(10^n).
%F Limit_{n->oo} a(n)/10^(2n) = (zeta(3)/zeta(3/2))^2 = 0.21172829478335...
%o (Python)
%o from math import isqrt
%o from sympy import mobius, integer_nthroot
%o def A376092(n):
%o def squarefreepi(n):
%o return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
%o def bisection(f, kmin=0, kmax=1):
%o while f(kmax) > kmax: kmax <<= 1
%o while kmax-kmin > 1:
%o kmid = kmax+kmin>>1
%o if f(kmid) <= kmid:
%o kmax = kmid
%o else:
%o kmin = kmid
%o return kmax
%o m = 10**n
%o def f(x):
%o c, l = m+x, 0
%o j = isqrt(x)
%o while j>1:
%o k2 = integer_nthroot(x//j**2,3)[0]+1
%o w = squarefreepi(k2-1)
%o c -= j*(w-l)
%o l, j = w, isqrt(x//k2**3)
%o c -= squarefreepi(integer_nthroot(x,3)[0])-l
%o return c
%o return bisection(f,m,m)
%Y Cf. A001694, A118896.
%K nonn,more
%O 0,2
%A _Chai Wah Wu_, Sep 09 2024