login
A375970
a(n) is the largest number k such that k^2 divides the square pyramidal number A000330(n).
3
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 5, 3, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 70, 5, 3, 3, 1, 1, 1, 4, 4, 1, 1, 1, 1, 5, 1, 2, 6, 1, 1, 1, 1, 1, 1, 2, 14, 35, 5, 1, 1, 3, 3, 2, 2, 1, 1, 1, 11, 1, 5, 4, 4, 1, 1, 3, 1, 1, 1, 2, 2, 7, 5, 5, 1, 1, 1, 2, 6, 3, 1, 1, 13, 1, 1, 10, 2, 1, 1, 1, 1, 1, 3, 4, 4, 7
OFFSET
1,7
COMMENTS
a(n)^2 is the largest square that divides n*(n+1)*(2*n+1)/6.
LINKS
FORMULA
a(n) = A000188(A000330(n)).
EXAMPLE
a(12) = 5 because A000330(12) = 650 = 2 * 5^2 = 13 and 5^2 is the largest square dividing 650.
MAPLE
g:= proc(n) local t, s, F; t:= n*(n+1)*(2*n+1)/6;
F:= ifactors(t)[2];
mul(s[1]^floor(s[2]/2), s=F)
end proc:
map(g, [$1..100]);
PROG
(PARI) a(n) = my(m=n*(n+1)*(2*n+1)/6); sqrtint(m/core(m)); \\ Michel Marcus, Sep 06 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Sep 04 2024
STATUS
approved