login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375970
a(n) is the largest number k such that k^2 divides the square pyramidal number A000330(n).
3
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 5, 3, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 70, 5, 3, 3, 1, 1, 1, 4, 4, 1, 1, 1, 1, 5, 1, 2, 6, 1, 1, 1, 1, 1, 1, 2, 14, 35, 5, 1, 1, 3, 3, 2, 2, 1, 1, 1, 11, 1, 5, 4, 4, 1, 1, 3, 1, 1, 1, 2, 2, 7, 5, 5, 1, 1, 1, 2, 6, 3, 1, 1, 13, 1, 1, 10, 2, 1, 1, 1, 1, 1, 3, 4, 4, 7
OFFSET
1,7
COMMENTS
a(n)^2 is the largest square that divides n*(n+1)*(2*n+1)/6.
LINKS
FORMULA
a(n) = A000188(A000330(n)).
EXAMPLE
a(12) = 5 because A000330(12) = 650 = 2 * 5^2 = 13 and 5^2 is the largest square dividing 650.
MAPLE
g:= proc(n) local t, s, F; t:= n*(n+1)*(2*n+1)/6;
F:= ifactors(t)[2];
mul(s[1]^floor(s[2]/2), s=F)
end proc:
map(g, [$1..100]);
PROG
(PARI) a(n) = my(m=n*(n+1)*(2*n+1)/6); sqrtint(m/core(m)); \\ Michel Marcus, Sep 06 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Sep 04 2024
STATUS
approved