login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that A002808(k+1) = A002808(k) + 1. In other words, the k-th composite number is 1 less than the next.
11

%I #15 Sep 18 2024 06:44:24

%S 3,4,7,8,11,12,14,15,16,17,20,21,22,23,25,26,29,30,32,33,34,35,37,38,

%T 39,40,43,44,45,46,48,49,52,53,54,55,57,58,60,61,62,63,65,66,67,68,69,

%U 70,72,73,76,77,80,81,83,84,85,86,87,88,89,90,91,92,93,94

%N Numbers k such that A002808(k+1) = A002808(k) + 1. In other words, the k-th composite number is 1 less than the next.

%C Positions of 1's in A073783 (see also A054546, A065310).

%F a(n) = A375926(n) - 1.

%e The composite numbers are 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, ... which increase by 1 after positions 3, 4, 7, 8, ...

%t Join@@Position[Differences[Select[Range[100],CompositeQ]],1]

%o (Python)

%o from sympy import primepi

%o def A375929(n):

%o def bisection(f,kmin=0,kmax=1):

%o while f(kmax) > kmax: kmax <<= 1

%o while kmax-kmin > 1:

%o kmid = kmax+kmin>>1

%o if f(kmid) <= kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o return kmax

%o def f(x): return n+bisection(lambda y:primepi(x+2+y))-2

%o return bisection(f,n,n) # _Chai Wah Wu_, Sep 15 2024

%o (Python) # faster for initial segment of sequence

%o from sympy import isprime

%o from itertools import count, islice

%o def agen(): # generator of terms

%o pic, prevc = 0, -1

%o for i in count(4):

%o if not isprime(i):

%o if i == prevc + 1:

%o yield pic

%o pic, prevc = pic+1, i

%o print(list(islice(agen(), 10000))) # _Michael S. Branicky_, Sep 17 2024

%Y Positions in A002808 of each element of A068780.

%Y The complement is A065890 shifted.

%Y First differences are A373403 (except first).

%Y The version for non-prime-powers is A375713, differences A373672.

%Y The version for prime-powers is A375734, differences A373671.

%Y The version for non-perfect-powers is A375740.

%Y The version for nonprime numbers is A375926.

%Y A000040 lists the prime numbers, differences A001223.

%Y A000961 lists prime-powers (inclusive), differences A057820.

%Y A002808 lists the composite numbers, differences A073783.

%Y A018252 lists the nonprime numbers, differences A065310.

%Y A046933 counts composite numbers between primes.

%Y Cf. A014689, A054546, A176246, A246655, A251092.

%K nonn

%O 1,1

%A _Gus Wiseman_, Sep 12 2024