%I #8 Sep 02 2024 08:38:38
%S 1,3,15,111,1116,14352,226176,4233492,91936080,2274815712,63220205736,
%T 1950659365608,66187523184048,2450020566119760,98269427218682880,
%U 4246150991775421824,196657057172519603712,9719485198364207149056,510628699670802850684800
%N E.g.f. satisfies A(x) = (1 - log(1 - x * A(x)^(1/3)))^3.
%F E.g.f.: B(x)^3, where B(x) is the e.g.f. of A138013.
%F E.g.f.: A(x) = ( (1/x) * Series_Reversion(x / (1 - log(1-x))) )^3.
%F a(n) = 3 * (n+2)! * Sum_{k=0..n} |Stirling1(n,k)|/(n-k+3)!.
%o (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x/(1-log(1-x)))/x)^3))
%o (PARI) a(n) = 3*(n+2)!*sum(k=0, n, abs(stirling(n, k, 1))/(n-k+3)!);
%Y Cf. A138013, A375904.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Sep 02 2024