Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 13 2024 07:29:45
%S 1,2,1,3,2,3,6,3,2,1,5,5,1,3,5,4,4,4,2,2,1,7,6,8,4,3,5,7,9,7,6,5,4,3,
%T 2,1,8,11,7,11,1,4,5,7,9,10,9,5,7,6,2,4,3,2,1,15,10,9,9,14,6,3,5,7,9,
%U 11,12,8,18,8,8,7,6,4,4,3,2,1,13,12,11,10,12,17,1,6,5,7,9,11,13,14,13,16,6,10,9,8,2,6,5,4,3,2,1
%N Table T(n, k) read by upward antidiagonals. The sequences in each column k is a triangle read by rows (blocks), where each row is a permutation of the numbers of its constituents. Row number n in column k has length n*k = A003991(n,k); see Comments.
%C A208233 presents an algorithm for generating permutations, where each generated permutation is self-inverse.
%C The sequence in each column k possesses two properties: it is both a self-inverse permutation and an intra-block permutation of natural numbers.
%H Boris Putievskiy, <a href="/A375797/b375797.txt">Table of n, a(n) for n = 1..9870</a>
%H Boris Putievskiy, <a href="https://arxiv.org/abs/2310.18466">Integer Sequences: Irregular Arrays and Intra-Block Permutations</a>, arXiv:2310.18466 [math.CO], 2023.
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>.
%F T(n,k) = P(n,k) + k*(L(n,k)-1)*L(n,k)/2 = P(n,k) + A062707(L(n-1),k), where L(n,k) = ceiling((sqrt(8*n*k+k^2)-k)/(2*k)), R(n,k) = n-k*(L(n,k)-1)*L(n,k)/2, P(n,k) = (((-1)^max(R(n,k),k*L(n,k)+1-R(n,k))+1)*R(n,k)-((-1)^max(R(n,k),k*L(n,k)+1-R(n,k))-1)*(k*L(n,k)+1-R(n,k))/2.
%F T(n,1) = A188568(n). T(1,k) = A093178(k). T(n,n) = A124625(n). L(n,1) = A002024(n). L(n,2) = A000194(n). L(n,3) = A111651(n). L(n,4) = A371355(n). R(n,1) = A002260(n). R(n,2) = A074294(n).
%e Table begins:
%e k= 1 2 3 4 5 6
%e -----------------------------------
%e n= 1: 1, 1, 3, 1, 5, 1, ...
%e n= 2: 2, 2, 2, 3, 2, 5, ...
%e n= 3: 3, 3, 1, 2, 3, 3, ...
%e n= 4: 6, 5, 4, 4, 4, 4, ...
%e n= 5: 5, 4, 8, 5, 1, 2, ...
%e n= 6: 4, 6, 6, 11, 6, 6, ...
%e n= 7: 7, 7, 7, 7, 14, 7, ...
%e n= 8: 9, 11, 5, 9, 8, 17, ...
%e n= 9: 8, 9, 9, 8, 12, 9, ...
%e n= 10: 10, 10, 18, 10, 10, 15, ...
%e n= 11: 15, 8, 11, 6, 11, 11, ...
%e n= 12: 12, 12, 16, 12, 9, 13, ...
%e n= 13: 13, 13, 13, 13, 13, 12, ...
%e n= 14: 14, 19, 14, 23, 7, 14, ...
%e n= 15: 11, 15, 15, 15, 15, 10, ...
%e n= 16: 16, 17, 12, 21, 30, 16, ...
%e n= 17: 20, 16, 17, 17, 17, 8, ...
%e n= 18: 18, 18, 10, 19, 28, 18, ...
%e ... .
%e In column 3, the first 3 blocks have lengths 3,6 and 9. In column 6, the first 2 blocks have lengths 6 and 12. Each block is a permutation of the numbers of its constituents.
%e The first 6 antidiagonals are:
%e 1;
%e 2,1;
%e 3,2,3;
%e 6,3,2,1;
%e 5,5,1,3,5;
%e 4,4,4,2,2,1;
%t T[n_,k_]:=Module[{L,R,P,result},L=Ceiling[(Sqrt[8*n*k+k^2]-k)/(2*k)]; R=n-k*(L-1)*L/2; P=(((-1)^Max[R,k*L+1-R]+1)*R-((-1)^Max[R,k*L+1-R]-1)*(k*L+1-R))/2; result=P+k*(L-1)*L/2]
%t Nmax=18; Table[T[n,k],{n,1,Nmax},{k,1,Nmax}]
%Y Cf. A000194, A002024, A002260, A003991, A062707, A074294, A093178, A111651, A124625, A188568, A208233, A371355.
%K nonn,tabl
%O 1,2
%A _Boris Putievskiy_, Aug 29 2024