Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Sep 11 2024 10:07:16
%S 1,2,1,2,1,1,1,1,2,1,1,1,1,1,1,3,1,1,2,1,2,1,1,1,1,1,1,1,1,1,1,2,1,1,
%T 1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,
%U 1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1
%N Length of the n-th maximal anti-run of adjacent (increasing by more than one at a time) non-perfect-powers.
%C Non-perfect-powers (A007916) are numbers with no proper integer roots.
%C An anti-run of a sequence is an interval of positions at which consecutive terms differ by more than one.
%e The initial anti-runs are the following, whose lengths are a(n):
%e (2)
%e (3,5)
%e (6)
%e (7,10)
%e (11)
%e (12)
%e (13)
%e (14)
%e (15,17)
%e (18)
%e (19)
%e (20)
%e (21)
%e (22)
%e (23)
%e (24,26,28)
%t radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
%t Length/@Split[Select[Range[100],radQ],#1+1!=#2&]//Most
%Y For squarefree numbers we have A373127, runs A120992.
%Y For nonprime numbers we have A373403, runs A176246.
%Y For nonsquarefree numbers we have A373409, runs A053797.
%Y For prime-powers we have A373576, runs A373675.
%Y For non-prime-powers (exclusive) we have A373672, runs A110969.
%Y For runs instead of anti-runs we have A375702.
%Y For anti-runs of non-perfect-powers:
%Y - length: A375736 (this)
%Y - first: A375738
%Y - last: A375739
%Y - sum: A375737
%Y For runs of non-perfect-powers:
%Y - length: A375702
%Y - first: A375703
%Y - last: A375704
%Y - sum: A375705
%Y A001597 lists perfect-powers, differences A053289.
%Y A007916 lists non-perfect-powers, differences A375706.
%Y Cf. A007674, A045542, A046933, A216765, A251092, A373679, A375714.
%K nonn
%O 1,2
%A _Gus Wiseman_, Sep 10 2024