login
A375701
Expansion of e.g.f. 1 / sqrt(1 + x^3 * log(1 - x)).
3
1, 0, 0, 0, 12, 30, 120, 630, 19152, 166320, 1506600, 14968800, 313014240, 4864860000, 72829607760, 1116874558800, 23605893400320, 495461472105600, 10289649464640000, 215706738207542400, 5222625647551920000, 133507746422859513600, 3481696859911699968000
OFFSET
0,5
FORMULA
a(n) = n! * Sum_{k=0..floor(n/4)} (Product_{j=0..k-1} (6*j+3)) * |Stirling1(n-3*k,k)|/(6^k*(n-3k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1+x^3*log(1-x))))
(PARI) a(n) = n!*sum(k=0, n\4, prod(j=0, k-1, 6*j+3)*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 25 2024
STATUS
approved