login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375677
Number of partitions of [n] into blocks whose largest element is >= the sum of the remaining block elements.
1
1, 1, 2, 5, 13, 40, 133, 485, 1887, 7872, 34648, 161108, 784195, 3999850, 21209261, 117164889, 669800056, 3968343015, 24252416366, 153029073580, 992860849454, 6632168652281, 45444519380882, 319738889742372, 2303340195173602, 17001774682931823, 128258904114067371
OFFSET
0,3
EXAMPLE
a(4) = 13: 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
MAPLE
b:= proc(n, l) option remember; `if`(n=0, 1, `if`(n=1, 1,
b(n-1, sort([l[], n])))+add(`if`(n<=l[j], `if`(n=1, 1,
b(n-1, sort(subsop(j=l[j]-n, l)))), 0), j=1..nops(l)))
end:
a:= n-> b(n, []):
seq(a(n), n=0..15);
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0, 1, If[n == 1, 1,
b[n-1, Sort[Append[l, n]]]] + Sum[If[n <= l[[j]], If[n == 1, 1,
b[n-1, Sort[ReplacePart[l, j -> l[[j]] - n]]]], 0], {j, 1, Length[l]}]];
a[n_] := b[n, {}];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 15}] (* Jean-François Alcover, Aug 29 2024, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A149864 A149865 A174146 * A149866 A149867 A062704
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 23 2024
STATUS
approved