Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Aug 26 2024 11:43:33
%S 1,3,23,6,18,24,69,10,71,22,68,25,41,69,125,15,61,73,104,28,36,68,110,
%T 33,115,48,3060,69,95,131,2951,21,133,67,92,76,108,108,297,37,3007,45,
%U 203,76,105,117,2914,45,147,119,183,57,70,3081,3060,82,228,102,284
%N a(n) is the cardinality of the sumset of the Collatz trajectory of n.
%C "Sumset" of a set S = {s_i} means the set of sums of pairs, s_i + s_j with i <= j.
%H Markus Sigg, <a href="/A375650/b375650.txt">Table of n, a(n) for n = 1..10000</a>
%e The Collatz trajectory of 3 is {3,10,5,16,8,4,2,1}, which has the sumset {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,24,26,32} of size 23, so a(3) = 23.
%o (PARI) a(n) = {
%o my(T = List([n]), S = Set());
%o while(n > 1, n = if(n % 2 == 0, n/2, 3*n+1); listput(T, n));
%o for(i = 1, #T,
%o for(j = i, #T,
%o S = setunion(S, Set([T[i] + T[j]]));
%o )
%o );
%o #S
%o };
%o print(vector(59, n, a(n)));
%o (Python)
%o def a(n):
%o T, S = [n], set()
%o while n > 1:
%o if n & 1 == 0: n >>= 1
%o else: n = 3 * n + 1
%o T.append(n)
%o for i in range(len(T)):
%o for j in range(i, len(T)):
%o S.add(T[i] + T[j])
%o return len(S)
%o print([a(n) for n in range(1, 60)]) # _Darío Clavijo_, Aug 24 2024
%Y A375006 is the list of those n for which a(n) < A008908(n) * (A008908(n) + 1) / 2.
%K nonn
%O 1,2
%A _Markus Sigg_, Aug 24 2024