login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of infinitary divisors of n!.
4

%I #17 Aug 22 2024 16:46:51

%S 1,1,2,4,8,16,8,16,64,64,16,32,128,256,512,1024,2048,4096,256,512,512,

%T 2048,4096,8192,8192,16384,32768,65536,16384,32768,65536,131072,

%U 524288,2097152,131072,65536,32768,65536,131072,262144,524288,1048576,4194304,8388608

%N The number of infinitary divisors of n!.

%H Amiram Eldar, <a href="/A375635/b375635.txt">Table of n, a(n) for n = 0..3000</a>

%F a(n) = A037445(n!).

%F a(n) = 2^A177329(n).

%F A048656(n) <= a(n) <= A027423(n).

%t f[p_, e_] := 2^DigitCount[e, 2, 1]; a[0] = a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 100, 0]

%o (PARI) a(n) = vecprod(apply(x -> 2^hammingweight(x), factor(n!)[,2]));

%o (Python)

%o from collections import Counter

%o from sympy import factorint

%o def A375635(n): return 1<<sum(e.bit_count() for e in sum((Counter(factorint(i)) for i in range(2,n+1)),start=Counter()).values()) # _Chai Wah Wu_, Aug 22 2024

%Y Cf. A027423, A037445, A048656, A177329.

%K nonn

%O 0,3

%A _Amiram Eldar_, Aug 22 2024