%I #10 Oct 23 2024 00:40:52
%S 1,3,20,21,57,94,133,219,217,273,453,434,551,589,399,791,665,893,1321,
%T 779,1330,1387,1519,1749,1786,2033,1767,2527,2793,1995,4066,3325,4389,
%U 5548,4557,3895,4123,5187,5890,5529,5453,8075,6213,7980,7581,7790,11275,8113,11324,9310
%N a(n) is the least positive integer k such that there are n partitions k = x + y + z of positive integers such that x * y * z is a perfect cube or -1 if no such positive integer exists.
%e a(1) = 3 as 3 = 1 + 1 + 1 and 1 * 1 * 1 = 1 is a perfect cube.
%p N:= 2*10^4: m:= 67:
%p V:= Array(1..N): count:= 0:
%p for x from 1 to N/3 do
%p for y from x to (N-x)/2 do
%p F:= ifactors(x*y)[2];
%p b:= mul(t[1],t = select(s -> s[2] mod 3 = 2, F));
%p c:= mul(t[1],t = select(s -> s[2] mod 3 = 1, F));
%p for m from ceil((y/(b*c^2))^(1/3)) do
%p s:= x+y+m^3 * b * c^2;
%p if s > N then break fi;
%p if s < x + 2*y then next fi;
%p V[s]:= V[s]+1
%p od od od:
%p A:= Array(0..m): A[0]:= 1: count:= 1:
%p for i from 1 to N while count < m+1 do
%p v:= V[i];
%p if A[v] = 0 then A[v]:= i; count:= count+1 fi
%p od:
%p convert(V,list); # _Robert Israel_, Oct 21 2024
%Y Cf. A375580.
%K nonn
%O 0,2
%A _David A. Corneth_, Aug 21 2024