login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375540
a(n) = 2^n * n! * [x^n] (1/2 - exp(-x))^n.
0
1, 2, 12, 126, 1880, 36250, 856212, 23928758, 772172592, 28253043378, 1155731972780, 52265163565582, 2589097062756360, 139428505876012106, 8110011431007355716, 506710228437429986790, 33844577422630735656032, 2406541293179536265812834, 181497377154154817667851100
OFFSET
0,2
FORMULA
a(n) ~ n^n / (sqrt(1+LambertW(-exp(-1)/2)) * exp(n) * (-LambertW(-exp(-1)/2))^n). - Vaclav Kotesovec, Sep 01 2024
MAPLE
gf := n -> (1/2 - exp(-x))^n:
ser := n -> series(gf(n), x, 20):
a := n -> expand(2^n*n!*coeff(ser(n), x, n)):
seq(a(n), n = 0..18);
MATHEMATICA
Table[2^n * n! * SeriesCoefficient[(1/2 - E^(-x))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 01 2024 *)
CROSSREFS
Sequence in context: A209627 A253282 A375899 * A201470 A349268 A366821
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 01 2024
STATUS
approved