login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = numerator of Sum_{i=1..n} 1/A171397(i).
3

%I #13 Aug 30 2024 20:44:11

%S 1,3,11,25,137,49,363,761,7129,80939,83249,1109957,1135697,1159721,

%T 2364487,40916999,13865893,267536047,271415923,274943083,6401288429,

%U 6475652719,32735212187,33078431987,300680459483,43364113769,1269032646901,1280123549581,40016557117411,3666283538201

%N a(n) = numerator of Sum_{i=1..n} 1/A171397(i).

%C Suggested by A375805.

%H Alois P. Heinz, <a href="/A375523/b375523.txt">Table of n, a(n) for n = 1..2082</a>

%e The first few sums are 1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, 80939/27720, 83249/27720, 1109957/360360, 1135697/360360, 1159721/360360, 2364487/720720, ...

%p b:= n-> (l-> add(l[i]*11^(i-1), i=1..nops(l)))(convert(n,base,10)):

%p g:= proc(n) option remember; `if`(n<1, 0, g(n-1)+1/b(n)) end:

%p a:= n-> numer(g(n)):

%p seq(a(n), n=1..30); # _Alois P. Heinz_, Aug 30 2024

%Y Cf. A171397, A375805, A375524, A001008/A002805.

%K nonn,frac

%O 1,2

%A _N. J. A. Sloane_, Aug 30 2024