Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 29 2024 21:11:03
%S 1,2,3,2,4,3,2,5,2,6,4,3,2,7,2,8,4,3,2,9,3,2,10,4,3,2,11,2,12,6,4,3,2,
%T 13,2,14,4,3,2,15,4,3,2,16,5,2,17,2,18,6,4,3,2,19,2,20,6,4,3,2,21,4,3,
%U 2,22,4,3,2,23,2,24,8,4,3,2,25,3,2,26,4,3,2
%N Irregular triangle read by rows in which row n lists the iterates of the sigma_0(x) map starting at n, until a fixed point is reached, where sigma_0(x) is the number-of-divisors function (A000005).
%C From the second row onward, the fixed point is 2.
%C First differs from A325239 at row n = 8.
%H Paolo Xausa, <a href="/A375513/b375513.txt">Table of n, a(n) for n = 1..10000</a> (rows 1..2292 of triangle, flattened).
%F T(n,1) = n; T(n,k) = A000005(T(n,k-1)), for k = 2..A036459(n)+1.
%e Triangle begins:
%e 1;
%e 2;
%e 3, 2;
%e 4, 3, 2;
%e 5, 2;
%e 6, 4, 3, 2;
%e 7, 2;
%e 8, 4, 3, 2;
%e 9, 3, 2;
%e 10, 4, 3, 2;
%e 11, 2;
%e 12, 6, 4, 3, 2;
%e ...
%t Array[Most[FixedPointList[DivisorSigma[0, #] &, #]] &, 30]
%o (PARI) row(n) = if (n==1, [1], my(list=List()); listput(list, n); while (n != 2, n = numdiv(n); listput(list, n)); Vec(list)); \\ _Michel Marcus_, Aug 21 2024
%Y Cf. A000005, A036459 (row lengths - 1), A060937 (row lengths, for n >= 2), A053477 (row sums), A325239.
%K nonn,tabf,easy
%O 1,2
%A _Paolo Xausa_, Aug 18 2024