login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375481
Starting numbers for the terms in A035333.
1
1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 2, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 3, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 4, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 5, 57, 58
OFFSET
1,2
LINKS
EXAMPLE
a(19) = 12 since A035333(19) = 1213, the concatenation of 12 and 13.
a(20) = 1 since A035333(20) = 1234, the concatenation of 1, 2, 3 and 4.
MATHEMATICA
ConsecutiveNumber[num_, numberOfNumbers_] := Module[{},
If[numberOfNumbers == 1, Return[num]];
FromDigits@(IntegerDigits[num]~Join~
IntegerDigits@ConsecutiveNumber[num + 1, numberOfNumbers - 1])
]
ConsecutiveNumberDigits[maxDigits_] := Module[{numList = {}, c, d},
Do[
numList =
numList~Join~(Association[# -> ConsecutiveNumber[#, c]] & /@
Range[Power[10, d - 1], Power[10, d] - 1]); ,
{d, 1, Floor[maxDigits/2]}, {c, 2, Floor[maxDigits/d]}
];
SortBy[Select[numList, Values[#][[1]] < Power[10, maxDigits] &],
Values[#] &]
]
Keys[ConsecutiveNumberDigits[8]]//Flatten (* number in this line corresponds to the maximum number of digits of the concatenated terms *)
PROG
(Python)
import heapq
from itertools import islice
def agen(): # generator of terms
c = 12
h = [(c, 1, 2)]
nextcount = 3
while True:
(v, s, l) = heapq.heappop(h)
yield s
if v >= c:
c = int(str(c) + str(nextcount))
heapq.heappush(h, (c, 1, nextcount))
nextcount += 1
l += 1; v = int(str(v)[len(str(s)):] + str(l)); s += 1
heapq.heappush(h, (v, s, l))
print(list(islice(agen(), 70))) # Michael S. Branicky, Aug 18 2024
CROSSREFS
For the terms generated by consecutive concatenations see A035333.For concatenations of various numbers of consecutive integers see A000027 (k=1), A127421 (k=2), A001703 (k=3), A279204 (k=4).For primes that are the concatenation of two or more consecutive integers see A052087.
Sequence in context: A053830 A033929 A025482 * A023125 A319657 A255594
KEYWORD
easy,nonn,base
AUTHOR
STATUS
approved