login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: a permutation of the nonnegative integers based on the Eytzinger order.
1

%I #10 Sep 02 2024 03:49:02

%S 0,2,1,4,3,5,8,7,9,6,13,11,14,10,12,18,16,20,15,17,19,24,22,26,21,23,

%T 25,27,32,30,34,29,31,33,35,28,41,39,43,37,40,42,44,36,38,51,48,53,46,

%U 50,52,54,45,47,49,62,58,64,56,60,63,65,55,57,59,61

%N Triangle read by rows: a permutation of the nonnegative integers based on the Eytzinger order.

%C Let T(n) denote the triangular numbers. Set, for n >= 0, I(n) = [T(n), T(n+1)), lower bound included, upper bound excluded. Applying the Eytzinger ordering to I(n) gives E(n) = [A375825(n + 1, k + 1) + T(n) - 1 for k in 0..n]. Joining E(0), E(1), E(2), ... gives a permutation of the nonnegative integers. The Eytzinger order of 1..n is described in A375825.

%H Maxim Zaks, <a href="https://medium.com/swlh/binary-search-vs-eytzinger-order-301f0a9a797d">Binary Search vs. Eytzinger Order</a>, blog post, 2020.

%e Triangle starts:

%e I(n) -> E(n)

%e --------------------------------------------------

%e 0 -> [ 0]

%e 1..2 -> [ 2, 1]

%e 3..5 -> [ 4, 3, 5]

%e 6..9 -> [ 8, 7, 9, 6]

%e 10..14 -> [13, 11, 14, 10, 12]

%e 15..20 -> [18, 16, 20, 15, 17, 19]

%e 21..27 -> [24, 22, 26, 21, 23, 25, 27]

%e 28..35 -> [32, 30, 34, 29, 31, 33, 35, 28]

%e 36..44 -> [41, 39, 43, 37, 40, 42, 44, 36, 38]

%e 45..53 -> [51, 48, 53, 46, 50, 52, 54, 45, 47, 49]

%p Erow := proc(n) local E, row, i, j;

%p row := [seq(0, 0..n)]:

%p E := proc(n, k, i) option remember; j := i:

%p if k <= n + 1 then

%p j := E(n, 2 * k, j): row[k] := j:

%p j := E(n, 2 * k + 1, j + 1):

%p fi: j end:

%p E(n, 1, 0):

%p row end:

%p Trow := n -> local k; seq((n*(n + 1)/2) + Erow(n)[k + 1], k = 0..n):

%p seq(Trow(n), n = 0..10);

%o (Python)

%o def A375469row(n: int) -> list[int]:

%o t = n * (n + 1) // 2

%o return [A375825row(n + 1)[k + 1] + t - 1 for k in range(n + 1)]

%o print([A375469row(n)[k] for n in range(11) for k in range(n + 1)])

%Y Cf. A375825.

%K nonn,tabl

%O 0,2

%A _Peter Luschny_, Sep 01 2024