login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying 0 = Sum_{k=0..n} (-1)^k * binomial(3*n-2*k, k) * ([x^k] A(x)^n) for n >= 1.
2

%I #12 Sep 12 2024 15:00:05

%S 1,1,3,27,520,17461,924123,72565316,8092491188,1237738519836,

%T 252223179026317,66826143258640668,22547253821858556366,

%U 9516722710620123685768,4947980149610424524104600,3126554347854062023615490499,2372761989077914432028426533800,2140079932579758851404630992687571

%N Expansion of g.f. A(x) satisfying 0 = Sum_{k=0..n} (-1)^k * binomial(3*n-2*k, k) * ([x^k] A(x)^n) for n >= 1.

%C Note that 0 = Sum_{k=0..n} (-1)^k * binomial(n+2*k, 3*k) * ([x^k] D(x)^n) for n >= 1 is satisfied by the function D(x) = 1 + x*D(x)^3 (g.f. of A001764), where coefficient [x^k] D(x)^n = binomial(n+3*k-1, k)*n/(n+2*k).

%H Paul D. Hanna, <a href="/A375441/b375441.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) ~ c * d^n * n!^3 * n^alpha, where d = 0.1579852929267375678916376580224..., alpha = 2.6601429516008505168108..., c = 0.86048778713891683578001... - _Vaclav Kotesovec_, Sep 12 2024

%e G.f.: A(x) = 1 + x + 3*x^2 + 27*x^3 + 520*x^4 + 17461*x^5 + 924123*x^6 + 72565316*x^7 + 8092491188*x^8 + ...

%e RELATED TABLES.

%e The table of coefficients of x^k in A(x)^n begins:

%e n=1: [1, 1, 3, 27, 520, 17461, 924123, ...];

%e n=2: [1, 2, 7, 60, 1103, 36124, 1887017, ...];

%e n=3: [1, 3, 12, 100, 1758, 56097, 2890755, ...];

%e n=4: [1, 4, 18, 148, 2495, 77500, 3937572, ...];

%e n=5: [1, 5, 25, 205, 3325, 100466, 5029880, ...];

%e n=6: [1, 6, 33, 272, 4260, 125142, 6170284, ...];

%e ...

%e from which we may illustrate the defining property given by

%e 0 = Sum_{k=0..n} (-1)^k * binomial(3*n-2*k, k) * ([x^k] A(x)^n).

%e Using the coefficients in the table above, we see that

%e n=1: 0 = 1*1 - 1*1;

%e n=2: 0 = 1*1 - 4*2 + 1*7;

%e n=3: 0 = 1*1 - 7*3 + 10*12 - 1*100;

%e n=4: 0 = 1*1 - 10*4 + 28*18 - 20*148 + 1*2495;

%e n=5: 0 = 1*1 - 13*5 + 55*25 - 84*205 + 35*3325 - 1*100466;

%e n=6: 0 = 1*1 - 16*6 + 91*33 - 220*272 + 210*4260 - 56*125142 + 1*6170284;

%e ...

%e The triangle A193636(n,k) = binomial(3*n-2*k, k) begins:

%e n=0: 1;

%e n=1: 1, 1;

%e n=2: 1, 4, 1;

%e n=3: 1, 7, 10, 1;

%e n=4: 1, 10, 28, 20, 1;

%e n=5: 1, 13, 55, 84, 35, 1;

%e n=6: 1, 16, 91, 220, 210, 56, 1;

%e ...

%o (PARI) {a(n) = my(A=[1],m); for(i=1, n, A=concat(A, 0); m=#A-1;

%o A[#A] = sum(k=0, m, (-1)^(m-k+1) * binomial(3*m-2*k, k) * polcoef(Ser(A)^m, k) )/m ); A[n+1]}

%o for(n=0, 20, print1(a(n), ", "))

%Y Cf. A193636, A375440, A375450, A375451.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Sep 11 2024