login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375438
Expansion of g.f. A(x) satisfying A(x) = x + x^2 + (A(x)^3 + 2*A(x^3))/3.
2
1, 1, 1, 1, 2, 4, 6, 12, 24, 46, 93, 191, 393, 819, 1724, 3648, 7772, 16654, 35850, 77520, 168289, 366629, 801328, 1756620, 3861157, 8508247, 18791480, 41591566, 92237598, 204931918, 456096480, 1016720162, 2269865456, 5074732028, 11360680664, 25464831258, 57146836290
OFFSET
1,5
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 2.3394011548205191342723840863090815005163727107... and c = 0.278795592719328257510209001410993009380027455... - Vaclav Kotesovec, Aug 22 2024
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 12*x^8 + 24*x^9 + 46*x^10 + 93*x^11 + 191*x^12 + 393*x^13 + 819*x^14 + 1724*x^15 + ...
where A(x) = x + x^2 + (A(x)^3 + 2*A(x^3))/3.
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 18*x^7 + 36*x^8 + 70*x^9 + 138*x^10 + 279*x^11 + 571*x^12 + 1179*x^13 + 2457*x^14 + 5168*x^15 + ...
Let B(x) be the series reversion, B(A(x)) = x, then B(x) begins
B(x) = x - x^2 + x^3 - x^4 + 3*x^6 - 8*x^7 + 9*x^8 + 18*x^9 - 134*x^10 + 442*x^11 - 997*x^12 + 1428*x^13 - 10*x^14 - 7640*x^15 + ...
SPECIFIC VALUES.
A(2/5) = 0.741461459188681119672668058998130332678610537393868...
A(1/3) = 0.515838591521774544528452689654484632143493145820237...
A(1/4) = 0.335691575266570204286454430830296229544471248787335...
A(1/5) = 0.250623759777806277498640241328479184446996870792060...
A(1/6) = 0.200220725056085320106333620370114891484630832364434...
PROG
(PARI) {a(n) = my(A=[0, 1], Ax=x); for(i=1, n, A = concat(A, 0); Ax=Ser(A);
A[#A] = polcoeff( x + x^2 + ( Ax^3 + 2*subst(Ax, x, x^3))/3 - Ax, #A-1) ); A[n+1]}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 21 2024
STATUS
approved