OFFSET
2,1
COMMENTS
Trivially, T(n,n) = 1 and T(n,n-1) = 0.
FORMULA
Sum_{j=0..n-2} T(n,j) = (3*n)!/(6^n) - 1 = A014606(n) - 1.
EXAMPLE
The triangle begins
19;
1622, 57;
362997, 6488, 114,
166336604, 1814985, 16220, 190;
.
T(2,0) = 19: the permutations of {1,1,1,2,2,2} with no fixed triples are
[1,1,2,1,2,2], [1,1,2,2,1,2], [1,1,2,2,2,1], [1,2,1,1,2,2], [1,2,1,2,1,2], [1,2,1,2,2,1], [1,2,2,1,1,2], [1,2,2,1,2,1], [1,2,2,2,1,1], [2,1,1,1,2,2], [2,1,1,2,1,2], [2,1,1,2,2,1], [2,1,2,1,1,2], [2,1,2,1,2,1], [2,1,2,2,1,1], [2,2,1,1,1,2], [2,2,1,1,2,1], [2,2,1,2,1,1], [2,2,2,1,1,1].
PROG
(PARI) mima (x, n1=1, i2=-oo) = {my (n2, n=#x, mi=x[n1], ma=mi); n2=if (i2<=0, n, min(n, i2)); for (i=n1+1, n2, if (x[i]<mi, mi=x[i], if (x[i]>ma, ma=x[i]))); [mi, ma]};
\\ returns row n of triangle, bsize is the block size in the multiset.
a375219(n, bsize=3) = {my (p=vector(bsize*n, i, 1+(i-1)\bsize), r=s=vector(n), m=vector(n-1)); forperm (p, q, for (b=1, n, my (bm=bsize*(b-1), j=mima(q, bm+1, bm+bsize)); r[b]=j[1]; s[b]=j[2]); my (rs=vector(n, i, r[i]==i && s[i]==i)); for (k=0 , n-2, m[k+1]+=vecsum(rs)==k)); m}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Hugo Pfoertner, Aug 08 2024
EXTENSIONS
More terms (three rows) from Alois P. Heinz, Aug 16 2024
STATUS
approved