Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jul 28 2024 16:57:16
%S 0,1,1,-2,1,1,1,3,-2,1,1,-1,1,1,1,-4,1,-1,1,-1,1,1,1,3,-2,1,3,-1,1,1,
%T 1,5,1,1,1,-2,1,1,1,3,1,1,1,-1,-1,1,1,-3,-2,-1,1,-1,1,3,1,3,1,1,1,-1,
%U 1,1,-1,-6,1,1,1,-1,1,1,1,1,1,1,-1,-1,1,1,1,-3
%N The difference between the maximum odd exponent and the maximum even exponent in the prime factorization of n, where 0 is assigned to each maximum exponent if no such exponent exists.
%C The indices of high value records are 1, 2, 8, 32, 128, 512, ... (A081294 with offset 1), and the indices of low value records are 1, 4, 16, 64, 256, 1024, ... (A000302 with offset 1).
%H Amiram Eldar, <a href="/A375034/b375034.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F a(n) = A375032(n) - A375033(n).
%F a(n) = 0 if and only if n = 1.
%F a(n) <= 0 if and only if n is in A368714.
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} (-1)^(k+1)*k*d(k) = 0.5741591604302832339078..., where d(k) = Product_{p prime} (1 - 1/(p^(k+1)*(p+1)) - Product_{p prime} (1 - 1/(p^(k-1)*(p+1)) for k >= 2, and d(1) = Product_{p prime} (1 - 1/(p^2*(p+1)).
%t a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[0, Max[Select[e, OddQ]]] - Max[0, Max[Select[e, EvenQ]]]]; a[1] = 0; Array[a, 100]
%o (PARI) a(n) = {my(e = factor(n)[,2], e1 = select(x -> (x % 2), e), e2 = select(x -> !(x % 2), e)); if(#e1 == 0, 0, vecmax(e1)) - if(#e2 == 0, 0, vecmax(e2));}
%Y Cf. A000302, A081294, A368714, A375032, A375033.
%K sign,easy
%O 1,4
%A _Amiram Eldar_, Jul 28 2024