Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jul 27 2024 12:33:09
%S 1,1,1,1,1,1,12,12,3,9,720,720,160,160,35,189,189,189,145152,145152,
%T 7257600,12800,275,275,136857600,684288000,4343625,17875,875875,
%U 875875,125536739328,125536739328,15324309,637,709689344,9052160000,18104320000,18104320000,2624375
%N Square root of largest unitary square divisor of n!.
%C Unitary analog of A055772.
%C a(n) is even if and only if n > 1 and is in A006364.
%H Amiram Eldar, <a href="/A374989/b374989.txt">Table of n, a(n) for n = 0..1118</a>
%F a(n) = sqrt(A374988(n)).
%F a(n) = A071974(n!).
%t f[p_, e_] := If[EvenQ[e], p^(e/2), 1]; a[0] = a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40, 0]
%o (PARI) a(n) = {my(f = factor(n!)); prod(i = 1, #f~, if(f[i, 2]%2, 1, f[i, 1]^(f[i, 2]/2)));}
%o (Python)
%o from math import prod
%o from itertools import count, islice
%o from collections import Counter
%o from sympy import factorint
%o def A374989_gen(): # generator of terms
%o c = Counter()
%o for i in count(0):
%o c += Counter(factorint(i))
%o yield prod(p**(e>>1) for p, e in c.items() if e&1^1)
%o A374989_list = list(islice(A374989_gen(),30)) # _Chai Wah Wu_, Jul 27 2024
%Y Cf. A006364, A055772, A071974, A374988.
%K nonn
%O 0,7
%A _Amiram Eldar_, Jul 26 2024