login
a(n) = (1/4)*Product_{k=0..n} F(k)+4, where F=A000045 (Fibonacci numbers).
0

%I #6 Aug 19 2024 05:55:18

%S 1,5,25,150,1050,9450,113400,1927800,48195000,1831410000,108053190000,

%T 10048946670000,1487244107160000,352476853396920000,

%U 134293681144226520000,82456320222555083280000,81714213340552087530480000,130824455558223892136298480000

%N a(n) = (1/4)*Product_{k=0..n} F(k)+4, where F=A000045 (Fibonacci numbers).

%C Trivially, a(n+1)/a(n) is an integer for n>=0, so (a(n)) is a divisibility sequence.

%t q[n_] := Fibonacci[n]

%t p[n_] := Product[q[k] + 4, {k, 0, n}]

%t Table[(1/4)*Simplify[p[n]], {n, 0, 20}]

%Y Cf. A000045.

%K nonn

%O 0,2

%A _Clark Kimberling_, Aug 04 2024

%E Definition corrected by _Georg Fischer_, Aug 19 2024