%I #17 Sep 24 2024 09:28:41
%S 2,3,113,3229,15683,736279,8332427,37305713,4948884397,6193302809,
%T 316781230427
%N Smallest primes p_1 where products m of n consecutive primes p_1..p_n are such that only p_1 < m^(1/n).
%e a(2) = 2 since m = 2*3 = 6 and 3 > sqrt(6).
%e a(3) = 3 since m = 3*5*7 = 105 and 5 > 105^(1/3).
%e a(4) = 113 since m = 113 * 127 * 131 * 137 = 257557397 and 127 > 257557397^(1/4), etc.
%t k = 1; Table[r = Range[0, n - 1]; While[(Set[{p, q, m}, {#[[1]], #[[2]], Times @@ #}]; q < Surd[m, n]) &[Prime[k + r]], k++]; p, {n, 2, 6}]
%o (PARI) a(n) = {my(ps = vector(n, k, prime(k))); forprime(p = prime(n+1), , if(ps[2]^n > vecprod(ps), return(ps[1])); ps = concat(vecextract(ps, "^1"), p));} \\ _Amiram Eldar_, Sep 23 2024
%Y Cf. A372209, A375974, A376136.
%K nonn,hard,more
%O 2,1
%A _Michael De Vlieger_, Sep 19 2024
%E a(10)-a(12) from _Amiram Eldar_, Sep 23 2024